Recent results from NA48 experiment

Andrea Michetti
on behalf of NA48 collaboration

andrea.michetti@cern.ch

Perugia University
Chiral Perturbation Theory tests

\(\chi PT \) describes low energy processes where QCD is non-perturbative.

It is based on perturbative expansion of momenta and masses:

\[
\frac{p^2}{(4\pi F_\pi)^2}, \frac{m^2}{(4\pi F_\pi)^2} \quad \text{where} \quad (4\pi F_\pi) \sim 1.2 \text{ GeV}
\]

Two experimental tests of the theory will be presented:

- \(K_S \rightarrow \gamma \gamma \)
- \(K_S \rightarrow \pi^0 \gamma \gamma \)

They all have \(\mathcal{O}(p^2) = 0 \) and \(\mathcal{O}(p^4) \) precisely predicted.
The beam
The detector
NA48 data taking periods

<table>
<thead>
<tr>
<th>Year</th>
<th>Beam type</th>
<th>Physics program</th>
</tr>
</thead>
<tbody>
<tr>
<td>1997</td>
<td>$K_L + K_S$</td>
<td>ε'/ε</td>
</tr>
<tr>
<td>1998</td>
<td>$K_L + K_S$</td>
<td>ε'/ε, K_S lifetime, $K_L \rightarrow \pi^0\gamma\gamma$, ...</td>
</tr>
<tr>
<td>1999</td>
<td>$K_L + K_S$</td>
<td>ε'/ε, $K_L \rightarrow \pi^0\gamma\gamma$, ...</td>
</tr>
<tr>
<td>2000</td>
<td>K_L only</td>
<td>K^0 mass, $K_L \rightarrow \gamma\gamma$, ε'/ε checks</td>
</tr>
<tr>
<td></td>
<td>η run</td>
<td>η mass</td>
</tr>
<tr>
<td></td>
<td>K_S high intensity</td>
<td>$K_S \rightarrow \gamma\gamma$, ...</td>
</tr>
<tr>
<td>2001</td>
<td>$K_L + K_S$</td>
<td>ε'/ε</td>
</tr>
<tr>
<td>2002</td>
<td>K_S high intensity</td>
<td>Hyperon physics, K_S rare decays</td>
</tr>
<tr>
<td>2003</td>
<td>K^+, K^-</td>
<td>CP violation in charged Kaons</td>
</tr>
</tbody>
</table>

No spectrometer

Recent results from NA48 experiment – p.5/13
The z_{vertex} reconstruction

$$z_{\text{vertex}} = z_{\text{LKR}} - \frac{1}{m_{K^0}} \sqrt{\sum_{i,j<i} E_i E_j [(x_i - x_j)^2 + (y_i - y_j)^2]}$$

Requirements for Kaon decay vertex reconstruction

- Good cluster energy resolution
- Good impact point resolution

$$\frac{\sigma(E)}{E} = \frac{0.09}{E} \oplus \frac{0.032}{\sqrt{E}} \oplus 0.0042$$

$$\sigma_{x,y} = 1.3 \text{ mm}$$

$$\sigma_t = 300 \text{ ps}$$
$K_S \rightarrow \gamma\gamma$

- χPT at $O(p^4)$ predicts $\text{BR} = 2.1 \times 10^{-6}$ (few % error)
 (D’Ambrosio-Espriu, J.L. Goity)

- Data from 2000 near-target run.

- Main background sources
 - $K_S \rightarrow \pi^0\pi^0$ with two showers in LKR:
 - overestimation of $z_{rec} (> 9$ meters)
 - decay region $-1 \text{ m} < z_{vertex} < 5 \text{ m}$
 - $K_L \rightarrow \gamma\gamma$ irreducible (~ 1.5 $K_S \rightarrow \gamma\gamma$)
 - $K_L \rightarrow 3\pi^0$ to estimate K_L flux
 - “far-target” data used to measure $\frac{\Gamma(K_L \rightarrow \gamma\gamma)}{\Gamma(K_L \rightarrow 3\pi^0)}$
Background subtraction

- **Background from $\pi^0\pi^0$** subtracted using MC normalized to the fully reconstructed $\pi^0\pi^0$ events

- $K_L \rightarrow \gamma\gamma$ estimated from the "far-target" run because from PDG

$$\frac{\Gamma(K_L \rightarrow \gamma\gamma)}{\Gamma(K_L \rightarrow 3\pi^0)} = (2.77 \pm 0.08) \times 10^{-3}$$

Not enough precise!

$$\frac{\Gamma(K_L \rightarrow \gamma\gamma)}{\Gamma(K_L \rightarrow 3\pi^0)} = (2.81 \pm 0.01_{\text{stat}} \pm 0.02_{\text{syst}}) \times 10^{-3}$$

Recent results from NA48 experiment – p.8/13
Experiment-theory comparison

- Compatibility with previous measurements.
- NA48/00 differs by 30% from $\mathcal{O}(p^4)$ prediction of $\chi PT \implies$ Indication of a large $\mathcal{O}(p^6)$ contribution.

$$BR(K_S \to \gamma \gamma) = (2.78 \pm 0.06_{sys} \pm 0.03_{stat} \pm 0.02_{ext}) \times 10^{-6}$$
$K_S \rightarrow \pi^0 \gamma \gamma$: theory

- Chiral structure of weak vertex is testable from the distribution of

 \[z_q = \left(\frac{m_{\gamma\gamma}}{m_K} \right)^2 \]

\[\text{BR}(K_S \rightarrow \pi^0 \gamma \gamma)_{z>0.2} = 3.8 \times 10^{-8} \]

Recent results from NA48 experiment – p.10/13
Data analysis: preliminary

- Data sample from 2000 near-target data
- Normalization to $K_S \rightarrow 2\pi^0$
- Main background contributions
 - $K_S \rightarrow \pi^0\pi^0$, $K_S \rightarrow \pi^0\pi_D^0$: rejected by kinematic cuts
 - $K_L \rightarrow \pi^0\gamma\gamma$: irreducible
 - $\Xi^0 \rightarrow \Lambda\pi^0 \rightarrow n\pi^0\pi^0$
 - E_γ asymmetries cuts
 - Estimated using neutron shower profile distribution
 - Beam activity: rejected by time cuts + anticounters
Signal & Background

Preliminary result

$${\text{BR}}(K_S \rightarrow \pi^0\gamma\gamma)_{z>0.2} = (4.9 \pm 1.6_{\text{stat}} \pm 0.8_{\text{syst}}) \times 10^{-8}$$

Not enough statistics to test the chiral structure of the weak vertex.
Two tests of the χPT performed by the analysis of the data collected by the NA48 experiment have been presented.

The results show that

- The $K_S \rightarrow \gamma\gamma$ can be described only invoking the $O(p^6)$ terms of the theory
- More statistics is needed to prove the chiral structure of the weak vertex in the $K_S \rightarrow \pi^0\gamma\gamma$