An overall review of the Kaon Physics results from NA48

Roberta Arcidiacono
CERN, Geneva

SuGRA20
March 18th, 2003

on behalf of the NA48 Collaboration
Cagliari, Cambridge, CERN, Dubna, Edinburgh, Ferrara, Firenze, Mainz, Orsay, Perugia, Pisa, Saclay, Siegen, Torino, Warsaw, Wien
Introduction

Results on CP violation ($\Re(\varepsilon'/\varepsilon)$, $\delta_L(e)$, η_{000})

By-product analysis (K_S lifetime, K mass, η mass)

Results on Rare Decays ($K \rightarrow \pi^+\pi^-e^+e^-$, $K \rightarrow \pi^0\gamma\gamma, \gamma\gamma$)

News from NA48/1 - 2002

Summary
The NA48 beam lines

SPS spill length: 5.2 s
Cycle time: 16.8 s
Proton momentum: 400 GeV/c

Proton momentum: 400 GeV/c
Cycle time: 16.8 s
SPS spill length: 5.2 s

Target

K target

Ks tagging station
(~ 40 m long)

Ks anticounter
(AKS)

Ks

6.8 cm

0.6 mrad

Last collimator

Decay Region
(~ 40 m long)

~ 126 m

~ 114 m

Ks

K L

Bent cristal

Muon sweeping

~ 2.4 \times 10^{12} \text{ protons per spill}
Magnetic spectrometer

\[\sigma_{X,Y} \sim 100 \, \mu m \]
\[\sigma_{K \, mass} \sim 2.5 \, MeV/c^2 \]
resolution on \((x,y)\) vertex \(\sim 2\) mm → allows for beams separation

Liquid Krypton em calorimeter

with high granularity \((\sim 13500\) cells\)
\[\sigma_t \sim 220 \, ps \]
\[\frac{\sigma(E)}{E} < 1 \% \text{ for } E_\gamma > 25 \, GeV \]
\[\sigma_{\pi^0 \, mass} \sim 1.1 \, MeV/c^2 \]
Resolutions plots

LKr calorimeter

\[M(\gamma_1 \gamma_2) \ (\text{GeV}/c^2) \]

\[M(\gamma_3 \gamma_4) \ (\text{GeV}/c^2) \]

\[\sigma = 0.42 \text{ MeV}/c^2 \]

\[\sigma = 0.83 \text{ MeV}/c^2 \]

\[m_{\gamma \gamma} \] invariant mass in \(K_S \rightarrow \pi^0 \pi^0 \) candidates

Spectrometer

\[M(\pi^+ \pi^-) \ (\text{GeV}/c^2) \]

\[\sigma = 2.5 \text{ MeV} \]

\[\bullet \ 2001 \]

\[- \ 98+99 \]

Kaon invariant mass in \(K_S \rightarrow \pi^+ \pi^- \) candidates

R. Arcidiacono - Results from NA48

SuGRA20
NA48 data taking overview

1997
$K_L + K_S$
ε'/ε run

1998
$K_L + K_S$
ε'/ε run
K_S lifetime,
K_L rare decays

1999
$K_L + K_S$
ε'/ε run
K_S lifetime,
K_L rare decays

K_S high
intens.
test run

2002
K_S high
intensity
K_S and Hyperons

2000
K_L
ε'/ε checks
K^0 mass,
$K_L \to \gamma\gamma$

and Hyperons

2001
$K_L + K_S$
ε'/ε run
$\delta_L(e), \delta_L(\mu)$

no spectrometer

R. Arcidiacono - Results from NA48

SuGRA20
The K_S events are identified by tagging the parent proton (measurement of the proton time in the tagging station).
Re(ε'/ε): the NA48 method

All experiments so far used the **Double Ratio method**:

$$R = \frac{N(K_L \rightarrow \pi^0\pi^0)[0.0009]}{N(K_S \rightarrow \pi^0\pi^0)[0.314]} \frac{N(K_S \rightarrow \pi^+\pi^-)[0.686]}{N(K_L \rightarrow \pi^+\pi^-)[0.002]} \simeq 1 - 6 \times \text{Re} \left(\frac{\varepsilon'}{\varepsilon} \right)$$

Accuracy $2 \times 10^{-4} \rightarrow$ count a lot of events in the most unbiased way

To exploit cancellation of systematic effects

- the 4 decay modes are taken simultaneously
- cancellation of fluxes, dead-times, inefficiencies, accidental losses
- from the same fiducial region (lifetime $\leq 3.5 \tau_S$) and two quasi-collinear beams, with offline lifetime weighting applied to K_L events to equalize distribution of K_S and K_L decay positions
- with similar energy spectra
 - performing the analysis in energy bins to minimize the remaining K_S / K_L differences
- small acceptance correction
- with high resolution detectors
- small background level
History of ε'/ε data collected by NA48

<table>
<thead>
<tr>
<th>Year</th>
<th>Days</th>
<th>ppp on K_L target</th>
<th>$K_L \rightarrow \pi^0\pi^0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1997</td>
<td>89</td>
<td>1×10^{12}</td>
<td>0.49 million $\Re(\varepsilon'/\varepsilon) = (18.5 \pm 4.5 \pm 5.8) \times 10^{-4}$</td>
</tr>
<tr>
<td>1998</td>
<td>135</td>
<td>1.4×10^{12}</td>
<td>1.05 million $\Re(\varepsilon'/\varepsilon) = (15.0 \pm 1.7 \pm 2.1) \times 10^{-4}$</td>
</tr>
<tr>
<td>1999</td>
<td>128</td>
<td>1.4×10^{12}</td>
<td>2.24 million $\Re(\varepsilon'/\varepsilon) = (13.7 \pm 2.5 \pm 1.8) \times 10^{-4}$</td>
</tr>
<tr>
<td>2001</td>
<td>90</td>
<td>2.4×10^{12} *</td>
<td>1.55 million</td>
</tr>
</tbody>
</table>

* modified beam parameters
in 2001 we collected additional data under varied conditions to test the intensity related systematics of the measurement

- SPS spill length/cycle time: $2.4/14.4$ s → $5.2/16.8$ s
- Duty cycle: 0.17 → 0.31
- Proton beam energy: 450 GeV → 400 GeV
- Instantaneous intensity: ~30% lower
- Detector: new drift chambers

![Graph showing Good K_L Events / 100 ms over time within a burst for 1999 and 2001]
Comparing 2001 and 98+99 Results

<table>
<thead>
<tr>
<th>Corrections and uncertainties on R (Units = 10^{-4})</th>
<th>2001</th>
<th>1998/1999</th>
</tr>
</thead>
<tbody>
<tr>
<td>statistical error</td>
<td>± 14.7</td>
<td>± 10.1</td>
</tr>
<tr>
<td>$\pi^0\pi^0$ reconstruction</td>
<td>± 5.3</td>
<td>± 5.8</td>
</tr>
<tr>
<td>Acceptance</td>
<td>21.9 ± 3.5 ± 4.0</td>
<td>26.7 ± 4.1 ± 4.0</td>
</tr>
<tr>
<td>$\pi^+\pi^-$ trigger inefficiency</td>
<td>5.2 ± 3.6</td>
<td>-3.6 ± 5.2</td>
</tr>
<tr>
<td>Acceptance</td>
<td>± 1.1</td>
<td>± 3.0</td>
</tr>
<tr>
<td>illumination diff.</td>
<td>± 3.0</td>
<td>± 3.0</td>
</tr>
<tr>
<td>K_S in-time activity</td>
<td>± 1.0</td>
<td>± 1.0</td>
</tr>
<tr>
<td>Accidentals: intensity diff.</td>
<td>6.9 ± 2.8</td>
<td>8.3 ± 3.4</td>
</tr>
<tr>
<td>Tagging inefficiency</td>
<td>± 3.0</td>
<td>± 3.0</td>
</tr>
<tr>
<td>$\pi^+\pi^-$ background</td>
<td>14.2 ± 3.0</td>
<td>16.9 ± 3.0</td>
</tr>
<tr>
<td>$\pi^+\pi^-$ reconstruction</td>
<td>± 2.8</td>
<td>± 2.8</td>
</tr>
<tr>
<td>beam scattering</td>
<td>± 2.0</td>
<td>± 2.0</td>
</tr>
<tr>
<td>$\pi^0\pi^0$ background</td>
<td>± 2.0</td>
<td>± 2.0</td>
</tr>
<tr>
<td>AKS inefficiency</td>
<td>± 0.3</td>
<td>± 0.4</td>
</tr>
<tr>
<td>Total correction and systematic error</td>
<td>+35.0 ± 6.5 ± 9.0</td>
<td>+35.9 ± 8.1 ± 9.6</td>
</tr>
<tr>
<td>double ratio R</td>
<td>0.99181</td>
<td>0.99098</td>
</tr>
</tbody>
</table>
\[\Re(\varepsilon'/\varepsilon) : \text{the final result} \]

From 2001 data:

\[\Re(\varepsilon'/\varepsilon) = (13.7 \pm 3.1) \times 10^{-4} \]

in agreement with NA48 previous measurements.

Combining the four years of data taking

\[\Re(\varepsilon'/\varepsilon) = (14.7 \pm 2.2) \times 10^{-4} \]

⇒ 6.7 \(\sigma \) away from 0

proposed accuracy has been reached 😊
World average of ε'/ε

naive average $\Rightarrow \Re(\varepsilon'/\varepsilon) = (16.6 \pm 1.6) \times 10^{-4}$

with a $\chi^2 = 6.3/3$
Not only ε'/ε
\[\delta_l(e) = \frac{BR(K_L \to \pi^- e^+ \nu_e) - BR(K_L \to \pi^+ e^- \bar{\nu}_e)}{BR(K_L \to \pi^- e^+ \nu_e) + BR(K_L \to \pi^+ e^- \bar{\nu}_e)} = 2\text{Re}(\epsilon) \]

\[200 \times 10^6 K_{e3} \quad (2001) \]

Analysis in pion momentum bins
Fake asymmetries studied

Corrections:
- trigger: 26.2 ± 6.0
- pion ID: -1.4 ± 3.5
- punch thru: -17.1 ± 2.4

\[\delta \cdot 10^{-3} \]

\[\chi^2 / n.d.f = 0.90 \quad (n.d.f. = 9) \]

\[P_\pi \text{ (GeV/c)} \]

\[\Rightarrow \delta_L(e) = (3.317 \pm 0.070_{\text{stat}} \pm 0.072_{\text{syst}}) \times 10^{-3} \]

New World Average: \(\delta_L = (3.310 \pm 0.054) \times 10^{-3} \) with a \(\chi^2 = 4.2/7 \)
\(K_{e3} \) : measurements overview

![Graph showing \(\delta_L \times 10^3 \) for various experiments like Columbia 69, Col.-Harv.-CERN 70, SLAC 72, Princeton 73, CERN-Heidelberg 74, KTEV 02, and NA48 03.]
\[\eta_{000} = \frac{A(K_S \rightarrow \pi^0 \pi^0 \pi^0)}{A(K_L \rightarrow \pi^0 \pi^0 \pi^0)} \]

if CPT symmetry assumed

\[\Re \eta_{000} = \Re \epsilon \]

\[\Im \eta_{000} \text{ sensitive to direct CP violation} \]

\[f(E, t) = \frac{I_{\text{near } \pi^0 \pi^0 \pi^0}}{I_{\text{far } \pi^0 \pi^0 \pi^0}} = A(E) \left[1 + |\eta_{000}|^2 e^{t/\tau_L - t/\tau_S} + 2D(E)e^{t/2\tau_L - t/2\tau_S} (\Re \eta_{000} \cos(\Delta mt) - \Im \eta_{000} \sin(\Delta mt)) \right] \]

5.9 \times 10^6 \pi^0 \pi^0 \pi^0 (KSHI 2000)

acceptance corrected at 1st order using data (from the K_L only run 2000)

fit in energy bin of \(f(E, t) \) range 70-170 GeV

fit parameters: \(A(E), \Re \eta_{000}, \Im \eta_{000} \)

Systematic sources: \(K^0 - \bar{K}^0 \) dilution, acceptance, accidentals, energy scale, binning
η_{000} measurement

\[\chi^2 / \text{ndf} = 415/405 \]

Fixing \(\text{Re } \eta_{000} = \text{Re } \epsilon \)

\[\text{Im } \eta_{000} = (-1.2 \pm 0.7_{\text{stat}} \pm 1.1_{\text{syst}}) \times 10^{-2} \]

Fit result

\[\text{Re } \eta_{000} = (-2.6 \pm 1.0_{\text{stat}} \pm 0.5_{\text{syst}}) \times 10^{-2} \]

\[\text{Im } \eta_{000} = (-3.4 \pm 1.0_{\text{stat}} \pm 1.1_{\text{syst}}) \times 10^{-2} \]

**Br: \(K_S \to \pi^0 \pi^0 \pi^0 \)< \(3.0 \times 10^{-7} \)

NA48 Preliminary

CPLEAR

\[\text{Re } \eta_{000} = (18 \pm 14_{\text{stat}} \pm 6_{\text{syst}}) \times 10^{-2} \]

\[\text{Im } \eta_{000} = (15 \pm 20_{\text{stat}} \pm 3_{\text{syst}}) \times 10^{-2} \]

\(\eta_{000} \) fixed

\[\text{Im } \eta_{000} = (-1.2 \pm 1.3) \times 10^{-2} \]
By-products of the ε'/ε analysis
- **98 + 99 ε'/ε data**
- K_S lifetime derived from the ratio K_S/K_L of decay time distributions
 - detector acceptance cancels in first approximation
- $\tau_S \ll \tau_L$, the ratio is primarily sensitive to the τ_S

N_S/N_L of $K^0 \to \pi^+\pi^-, \pi^0\pi^0$:
- corrected for residual acceptance differences due to beams geometry [MC]
- background subtracted (10^{-3} in K_L sample) using data
- fitted in bins of energy [70-170 GeV] and lifetime [0.5-3.5 τ_S]
K_S lifetime measurement overview

Data samples: 13.2M \(K_S \rightarrow \pi^+\pi^- \), 12.2M \(K_L \rightarrow \pi^+\pi^- \), 3.1M \(K_S \rightarrow \pi^0\pi^0 \), 2.8M \(K_L \rightarrow \pi^0\pi^0 \)

\[\tau_S = (0.89592 \pm 0.00052_{\text{stat}} \pm 0.00054_{\text{syst}}) \times 10^{-10} \text{ s} \]

\[\tau_S = (0.89626 \pm 0.00129_{\text{stat}} \pm 0.00100_{\text{syst}}) \times 10^{-10} \text{ s} \]

Combined result:

\[\tau_S = (0.89598 \pm 0.00048_{\text{stat}} \pm 0.00027_{\text{MCstat}} \pm 0.00043_{\text{syst}}) \times 10^{-10} \text{ s} \]

Measurement of η and K^0 masses

Year 2000

K^0 mass: data with only K_L beam

η mass: special η runs

Method

Using the $3\pi^0 \rightarrow 6\gamma$ decay channel:

1) the z_{π^0} position is inferred using the π^0 mass constraint via the relation

$$d\ [z_{\pi^0}, LKr] = \frac{1}{M_{\pi^0}} \sqrt{E_1 E_2 d_{12}}$$

2) using the d average from the $3 \pi^0$, the 6-body invariant mass is

$$M = \frac{1}{d_{\pi^0}} \sqrt{\sum_{i,j,i<j} E_i E_j (d_{ij})^2}$$

M is independent of the energy scale of the calorimeter!
Measurement of \(\eta \) and \(K^0 \) masses

Only symmetric decays used (photons \(\sim \) the same energy) to minimize sensitivity to residual nonlinearities

\(M_\eta/M_\pi^0 \) measured with an accuracy three times better than the PDG world average

\(M_{K^0}/M_{\pi^0} \) measured with an accuracy similar to the PDG

PDG 2000 Values:

\[M_{K^0} = 497.672 \pm 0.031 \text{ MeV}/c^2 \]

\[M_\eta = 547.30 \pm 0.12 \text{ MeV}/c^2 \]

\[
M_\eta = \begin{array}{c} 547.843 \pm 0.030_{\text{stat}} \pm 0.005_{MC\text{stat}} \pm 0.041_{syst} \text{ MeV}/c^2 \\
M_{K^0} = 497.625 \pm 0.001_{\text{stat}} \pm 0.003_{MC\text{stat}} \pm 0.031_{syst} \text{ MeV}/c^2
\end{array}
\]

On Rare Decays
Radiative K^0 decays

In the K_L case, interference between CP violating Inner Brem. and CP conserving Direct Emission processes, produces an asymmetry in the distribution of Θ between $\pi^+\pi^-$ and e^+e^- decay planes

$\sim 14\%$

- **DATA SAMPLE:** $98 + 99\, \Re\epsilon(\varepsilon'/\varepsilon)$ period + KSHI test runs of 99
- **K_S K_L decay rates** normalized to $K_L \rightarrow \pi^+\pi^-\pi^0_D$ coming from K_S K_L targets respectively
- detailed Montecarlo study to remove backgrounds and to compute the acceptances of signals and normalization
\[K_L \rightarrow \pi^+\pi^-e^+e^- \]

1162 candidates, expected background of 36.9 events

\[BR(K_L \rightarrow \pi^+\pi^-e^+e^-) = (3.08 \pm 0.20) \times 10^{-7} \]

\[A^S_\Phi = (14.2 \pm 3.6)\% \]
621 candidates (99 data) + 56 (98 data - published), expected background of 0.7 events

\[\text{BR}(K_S \rightarrow \pi^+\pi^-e^+e^-) = (4.69 \pm 0.30) \times 10^{-5} \]

\[A_\Phi^S = (0.5 \pm 4.3)\% \]

The results are in good agreement with the theoretical predictions

Large asymmetry observed in the angular correlation between \(\pi^+\pi^- \) and \(e^+e^- \) decay planes \(
\rightarrow \text{manifestation of indirect CP violation}
\)

No asymmetry observed in the \(K_S \) channel (as expected)
\(\chi PT \) and \(K_L \to \pi^0\gamma\gamma \) and \(K_S \to \gamma\gamma \)

\(O(p^4) \) diagrams:

\[
\begin{align*}
2.1 \times 10^{-6} & \quad \text{\includegraphics[width=0.3\textwidth]{diagram1}} \\
0.6 \times 10^{-6} & \quad \text{\includegraphics[width=0.3\textwidth]{diagram2}}
\end{align*}
\]

Similarities in these two decays:

- \(O(p^2) = 0 \), \(O(p^4) \) is unambiguously predicted by \(\chi PT \) (<5% precision)
- at \(O(p^6) \):

\[
\begin{align*}
K_L & \to \pi^0\gamma\gamma \\
\text{“scalar” exchange} & \quad \text{similar} & \quad K_S & \to \gamma\gamma \\
\text{“scalar” exchange} & + & \text{“scalar” exchange} & + \\
O(p^4) \text{ correction to} & A(K_L \to \pi^0\pi^+\pi^-) & a_V \text{ can be extracted from exper.} & m_{\gamma\gamma} \text{ distribution}
\end{align*}
\]

R. Arcidiacono - Results from NA48
$\text{K}_S \rightarrow \gamma \gamma$

$\gamma \gamma$ normalized to $\pi^0 \pi^0 \rightarrow$ most systematics cancel

2000 KSHI data

- 7500 estimated events in the signal region
- $-1 \, \text{m} < z_{\text{vertex}} < 5 \, \text{m}$

Main background:
- $2\pi^0$ with only 2 reconstr. clusters
- Irreducible $\text{K}_L \rightarrow \gamma \gamma$ (~ 1.5 times K_S)

Use $\text{K}_L \rightarrow 3\pi^0$ to estimate K_L flux, and 2000 K_L run to measure $\frac{\Gamma(\text{K}_L \rightarrow \gamma \gamma)}{\Gamma(\text{K}_L \rightarrow 3\pi^0)}$

$$BR(\text{K}_S \rightarrow \gamma \gamma) = (2.78 \pm 0.06_{\text{stat}} \pm 0.02_{\text{MC stat}} \pm 0.04_{\text{syst}}) \times 10^{-6}$$

This result differs by 30% from $O(p^4) \chi PT$ prediction \implies indication of large $O(p^6)$ contribution
$K_S \rightarrow \gamma\gamma$ measurements

χ_{PT}

$O(p^4)$ $O(p^6)$

NA31 NA48/99 NA48/00

$BR(K_S \rightarrow \gamma\gamma) \times 10^6$
KL, KS → π⁰γγ measurements

π⁰γγ signals normalized to π⁰π⁰

88 +99 ε'/ε data: KL

2500 events with 3.2% estimated background

vector-meson coupling of \(a_V = -0.46 \)

negligible CP-conserving contribution to KL → π⁰e⁺e⁻

BR(K_L → π⁰γγ) = (1.36 ± 0.03_{stat} ± 0.03_{syst}) \cdot 10^{-6}

2000 KSHI run: KS

KS → π⁰γγ first observation: 31 events with 13.2 estimated background

BR(K_S → π⁰γγ)_{zq>0.2} = (4.9±1.6_{stat}±0.8_{syst}) \cdot 10^{-8}

χPT prediction= 3.8 \times 10^{-8}

preliminary
The NA48/1 - phase II

NA48/1: high intensity neutral short beam experiment
(mainly dominated by K_S and neutral Hyperons)

NA48 detector, modified K_S beam line, more powerful DAQ

Physics motivations

- Search for $K_S \rightarrow \pi^0 e^+e^-$, $K_S \rightarrow \pi^0 \mu^+\mu^-$ decays
- Measure semi-leptonic and radiative Hyperons decays, improving experimental results on $\Xi^0 \rightarrow \Sigma^+ e^-\nu$, $\Xi^0 \rightarrow \Sigma^+ \mu^-\nu$, $\Xi^0 \rightarrow \Sigma^0 \gamma$, $\Xi^0 \rightarrow \Lambda\gamma$
- Study other K_S and Hyperon rare decays

Proposal goal: reach a SES of $2 - 3 \times 10^{-10}$ for $K_S \rightarrow \pi^0 e^+e^-$

Experimental set-up

- K_S beam produced by $\sim 5 \times 10^{10}$ proton per pulse (500 times more than ϵ'/ϵ config.)
 Accidental rate reduced by photon converter + sweeping magnet after the target
- detector prepared to maximize the particles flux
- DAQ speed up by some upgrades \rightarrow double bandwidth
From July 18th to September 18th:

- Successful data taking: data quality is good!
- Analysis well advanced, both in the Kaon and in the Hyperon sector.

\[N_{K_S} = \frac{\text{Downscale} \times N_{\pi^0\pi^0}}{\text{Acceptance} \times \text{BR}(K_S \rightarrow \pi^0\pi^0)} \approx 4.4 \times 10^{10} \]

\[\text{SES (5% acceptance)} \approx 4.5 \times 10^{-10} \]
In 4 years of data taking, NA48 measured the direct CP violation parameter \(\Re(\varepsilon'/\varepsilon) = (14.7 \pm 2.2) \times 10^{-4} \), with the proposed accuracy. The result is 6.7 \(\sigma \) from 0.

\(\delta_L(e) \) has been measured with competitive precision, \(\eta_{000} \) improved by an order of magnitude.

\(K_S \) lifetime, \(K \) mass, \(\eta \) mass measured with similar or better precision. \(\eta \) mass 4.2 \(\sigma \) from current world average.

On rare decays, several measurements testing \(\chi PT \) predictions have been done. First observation of \(K_S \to \pi^0\gamma\gamma \).

Active program to measure \(K_S \) rare decays and CP violation in the \(K^\pm \) decays [NA48/2!].