Studies of the K_{e4} decay at NA48/2

Michal Zamkovský on behalf of NA48/2 collaboration

Charles University in Prague

June 29, 2015
Outline

1. NA48 detectors
2. Physics motivation
3. Current experimental & theoretical situation
4. Event selection
5. Form factor measurement
6. Branching ratio measurement
7. Summary

Michal Zamkovský on behalf of NA48/2 collaboration

Studies of the K_{e4} decay at NA48/2
Michal Zamkovský on behalf of NA48/2 collaboration

Studies of the K_{e4} decay at NA48/2

Outline

1. NA48 detectors
2. Physics motivation
 - Current experimental & theoretical situation
 - Event selection
 - Form factor measurement
 - Branching ratio measurement
3. Summary
Outline

1. NA48 detectors
2. Physics motivation
3. Current experimental & theoretical situation
 - Event selection
 - Form factor measurement
 - Branching ratio measurement
4. Summary

Michal Zamkovský on behalf of NA48/2 collaboration
Michal Zamkovský on behalf of NA48/2 collaboration

Studies of the K_{e4} decay at NA48/2
Studies of the K_{e4} decay at NA48/2

Michal Zamkovský on behalf of NA48/2 collaboration
Outline

1. NA48 detectors
2. Physics motivation
3. Current experimental & theoretical situation
4. Event selection
5. Form factor measurement
6. Branching ratio measurement

Summary
NA48 detectors

Physics motivation

Current experimental & theoretical situation

Event selection

Form factor measurement

Branching ratio measurement

Summary
Experimental setup

Detector performances and resolutions:

<table>
<thead>
<tr>
<th>Detector</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCH</td>
<td>(\sigma_x = \sigma_y = 90 \mu m)</td>
</tr>
<tr>
<td></td>
<td>(\sigma_p/p = (1.02 \pm 0.044 \cdot p)%) in GeV/c</td>
</tr>
<tr>
<td>HOD</td>
<td>(\sigma_t \sim 150) ps</td>
</tr>
<tr>
<td>LKr</td>
<td>(\sigma_{E/E} = (3.2/\sqrt{E} \pm 9.0/E \pm 0.42)%) in GeV</td>
</tr>
<tr>
<td></td>
<td>(\sigma_x = \sigma_y = (0.42/\sqrt{E} \pm 0.06)) cm</td>
</tr>
</tbody>
</table>

Beam: simultaneous \(K^+ \) and \(K^- \) with a central momentum 60 GeV/c \(\pm 3.8\% \) (rms)

- Focused at DCH1 with \(\sim 10 \) mm transverse size
- Superimposed beam axes within 1 mm
Experimental setup

Detector performances and resolutions:

DCH

\[\sigma_x = \sigma_y = 90\,\mu\text{m} \]
\[\sigma_p/p = (1.02 \oplus 0.044 \cdot p)\% \, p \text{ in GeV}/c \]

HOD

\[\sigma_t \sim 150 \, \text{ps} \]

LKr

\[\sigma_E/E = (3.2/\sqrt{E} \oplus 9.0/E \oplus 0.42)\% \, E \text{ in GeV} \]
\[\sigma_x = \sigma_y = (0.42/\sqrt{E} \oplus 0.06) \, \text{cm} \]

Beam: simultaneous \(K^+ \) and \(K^- \) with a central momentum
60 GeV/c \(\pm 3.8\% \) (rms)

- Focused at DCH1 with
 \(\sim 10 \, \text{mm transverse size} \)
- Superimposed beam axes within 1 mm
Experimental setup

Detector performances and resolutions:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>DCH</td>
<td>$\sigma_x = \sigma_y = 90 \mu m$</td>
</tr>
<tr>
<td></td>
<td>$\sigma_p/p = (1.02 \oplus 0.044 \cdot p)%$ p in GeV/c</td>
</tr>
<tr>
<td>HOD</td>
<td>$\sigma_t \sim 150$ ps</td>
</tr>
<tr>
<td>LKr</td>
<td>$\sigma_E/E = (3.2/\sqrt{E} \oplus 9.0/E \oplus 0.42)%$ E in GeV</td>
</tr>
<tr>
<td></td>
<td>$\sigma_x = \sigma_y = (0.42/\sqrt{E} \oplus 0.06)$ cm</td>
</tr>
</tbody>
</table>

Beam: simultaneous K^+ and K^- with a central momentum 60 GeV/c \pm 3.8% (rms)

- Focused at DCH1 with ~ 10 mm transverse size
- Superimposed beam axes within 1 mm
Experimental setup

<table>
<thead>
<tr>
<th>Detector performances and resolutions:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>DCH</td>
<td>$\sigma_x = \sigma_y = 90\mu m$</td>
</tr>
<tr>
<td></td>
<td>$\sigma_p/p = (1.02 \oplus 0.044 \cdot p)%$ for p in GeV/c</td>
</tr>
<tr>
<td>HOD</td>
<td>$\sigma_t \sim 150$ ps</td>
</tr>
<tr>
<td>LKr</td>
<td>$\sigma_E/E = (3.2/\sqrt{E} \oplus 9.0/E \oplus 0.42)%$ for E in GeV</td>
</tr>
<tr>
<td></td>
<td>$\sigma_x = \sigma_y = (0.42/\sqrt{E} \oplus 0.06)$ cm</td>
</tr>
</tbody>
</table>

- **Beam**: simultaneous K^+ and K^- with a central momentum 60 GeV/c ± 3.8% (rms)
 - Focused at DCH1 with ~ 10 mm transverse size
 - Superimposed beam axes within 1 mm
Mandelstam variables:

\[s = \left(p_{\pi_1} + p_{\pi_2} \right)^2 = (k - L)^2, \]
\[t = \left(p_{\pi_2} + L \right)^2 = (k - p_{\pi_1})^2, \]
\[u = \left(p_{\pi_1} + L \right)^2 = (k - p_{\pi_2})^2 \]
\[L = p_l + p_\nu, \quad P = p_{\pi_1} + p_{\pi_2}, \quad Q = p_{\pi_1} - p_{\pi_2} \]

Kinematic constrain: \(s + t + u = m_K^2 + 2m_\pi^2 + L^2 \)

Cabibbo-Maksymowicz formulation: \(S_\pi = M_{\pi\pi}^2, \quad S_e = M_{e\nu}^2 \) and three angles: \(\theta_\pi, \theta_e, \phi \)
Mandelstam variables:

\[s = (p_{\pi_1} + p_{\pi_2})^2 = (k - L)^2, \]
\[t = (p_{\pi_2} + L)^2 = (k - p_{\pi_1})^2, \]
\[u = (p_{\pi_1} + L)^2 = (k - p_{\pi_2})^2 \]

\[L = p_l + p_\nu, \quad P = p_{\pi_1} + p_{\pi_2}, \quad Q = p_{\pi_1} - p_{\pi_2} \]

Kinematic constrain: \(s + t + u = m_K^2 + 2m_\pi^2 + L^2 \)

Cabibbo-Maksymowicz formulation: \(S_\pi = M_{\pi\pi}^2, S_e = M_{e\nu}^2 \) and three angles: \(\theta_\pi, \theta_e, \phi \)
Mandelstam variables:

\[s = (p_{\pi_1} + p_{\pi_2})^2 = (k - L)^2, \]
\[t = (p_{\pi_2} + L)^2 = (k - p_{\pi_1})^2, \quad u = (p_{\pi_1} + L)^2 = (k - p_{\pi_2})^2 \]
\[L = p_l + p_\nu, \quad P = p_{\pi_1} + p_{\pi_2}, \quad Q = p_{\pi_1} - p_{\pi_2} \]

Kinematic constrain: \(s + t + u = m_K^2 + 2m_\pi^2 + L^2 \)

Cabibbo-Maksymowicz formulation: \(S_\pi = M_{\pi\pi}^2, \quad S_e = M_{e\nu}^2 \) and three angles: \(\theta_\pi, \theta_\ell, \phi \)

Michal Zamkovský on behalf of NA48/2 collaboration

Studies of the \(K_{e4} \) decay at NA48/2
Differential decay rate summed over lepton spins in Cabibbo-Maksymowicz formulation:

\[
d^5\Gamma = \frac{G_F^2|V_{us}|^2}{2(4\pi)^6 m_K^5} \rho(S_\pi, S_e) J_5(S_\pi, S_e, \cos \theta_\pi, \cos \theta_e, \phi) \\
\quad \times dS_\pi dS_e d\cos \theta_\pi d\cos \theta_e d\phi,
\]

Function \(J_5 \) depends on complex hadronic form factors:

\[
F_1 = \frac{1}{2} \lambda^{1/2}(m_K^2, S_\pi, S_e) \cdot F + \sigma(S_\pi)(PL) \cos \theta_\pi \cdot G,
\]

\[
F_2 = \sigma(S_\pi)(S_\pi S_l)^{1/2} G,
\]

\[
F_3 = \sigma(S_\pi)(S_\pi S_l)^{1/2} \frac{H}{m_K^2},
\]

\[
F_4 = -(PL) F - S_l R - \sigma(S_\pi) \frac{1}{2} \lambda^{1/2}(m_K^2, S_\pi, S_e) \cos \theta_\pi \cdot G
\]

In \(K_{e4} \) decays, \(m_e \) can be neglected \(\Rightarrow \) \(F_4 \) will not contribute as is always multiplied by \(m_e^2 \).
Differential decay rate summed over lepton spins in Cabibbo-Maksymowicz formulation:

\[
\frac{d^5\Gamma}{\Gamma} = \frac{G_F^2 |V_{us}|^2}{2(4\pi)^6 m_K^5} \rho(S_\pi, S_e) J_5(S_\pi, S_e, \cos \theta_\pi, \cos \theta_e, \phi) \\
\times dS_\pi dS_e d \cos \theta_\pi d \cos \theta_e d\phi,
\]

Function \(J_5 \) depends on complex hadronic form factors:

\[
F_1 = \frac{1}{2} \lambda^{1/2}(m_K^2, S_\pi, S_e) \cdot F + \sigma(S_\pi)(PL) \cos \theta_\pi \cdot G,
\]

\[
F_2 = \sigma(S_\pi)(S_\pi S_l)^{1/2} G,
\]

\[
F_3 = \sigma(S_\pi)(S_\pi S_l)^{1/2} \frac{H}{m_K^2},
\]

\[
F_4 = -(PL)F - S_l R - \sigma(S_\pi) \frac{1}{2} \lambda^{1/2}(m_K^2, S_\pi, S_e) \cos \theta_\pi \cdot G
\]

In \(K_{e4} \) decays \(m_e \) can be neglected \(\Rightarrow \) \(F_4 \) will not contribute as is always multiplied by \(m_e^2 \)
Differential decay rate summed over lepton spins in Cabibbo-Maksymowicz formulation:

\[d^5\Gamma = \frac{G_F^2 |V_{us}|^2}{2(4\pi)^6 m_K^5} \rho(S_\pi, S_e) J_5(S_\pi, S_e, \cos \theta_\pi, \cos \theta_e, \phi) \times dS_\pi dS_e d \cos \theta_\pi d \cos \theta_e d\phi, \]

Function \(J_5 \) depends on complex hadronic form factors:

\[
F_1 = \frac{1}{2} \lambda^{1/2}(m_K^2, S_\pi, S_e) \cdot F + \sigma(S_\pi)(PL) \cos \theta_\pi \cdot G, \\
F_2 = \sigma(S_\pi)(S_\pi S_I)^{1/2} G, \\
F_3 = \sigma(S_\pi)(S_\pi S_I)^{1/2} \frac{H}{m_K^2}, \\
F_4 = -(PL)F - S_I R - \sigma(S_\pi) \frac{1}{2} \lambda^{1/2}(m_K^2, S_\pi, S_e) \cos \theta_\pi \cdot G
\]

In \(K_{e4} \) decays \(m_e \) can be neglected \(\Rightarrow \) \(F_4 \) will not contribute as is always multiplied by \(m_e^2 \)
Partial wave expansion:

\[
\frac{F_1}{m_K^2} = \sum_{l=0}^{\infty} P_l(\cos \theta) \cdot F_{1,l} e^{i \delta_l}, \quad \frac{F_{2(3)}}{m_K^2} = \sum_{l=0}^{\infty} P'_l(\cos \theta) \cdot F_{2(3),l} e^{i \delta_l}
\]

Expression for \(F, G, H\) form factors:

\[
F = F_s e^{i \delta_{fs}} + (F_p e^{i \delta_{fp}} \cos \theta + F_d e^{i \delta_{fd}} \cos^2 \theta + \ldots),
\]

\[
G = G_p e^{i \delta_{gp}} + (G_d e^{i \delta_{gd}} \cos \theta + \ldots), \quad H = H_p e^{i \delta_{hp}} + (H_d e^{i \delta_{hd}} \cos \theta + \ldots)
\]

S-wave term (only term for \(K_{e4}^{00}\) mode) contribution:

\[
F_s = \left(f_s + f'_s q^2 + f''_s q^4 + f_e \left(\frac{S_e}{4m_{\pi^+}^2} \right) \right) e^{i \delta_0}, \quad q = \sqrt{\frac{S_\pi - 4m_{\pi^+}^2}{4m_{\pi^+}^2}}
\]

Integration of \(J_5\) over \(\cos \theta\) and \(\phi\):

\[
J_3 = |XF_s|^2(1 - \cos 2\theta) = 2|XF_s|^2 \sin^2 \theta_e,
\]

Differential rate:

\[
d^3\Gamma = \frac{G_F^2|V_{us}|^2}{2(4\pi)^6 m_K^5} \rho(S_\pi, S_e) J_3(S_\pi, S_e, \cos \theta_e) \times dS_\pi dS_e d \cos \theta_e.
\]
Partial wave expansion:

\[
\frac{F_1}{m_K^2} = \sum_{l=0}^{\infty} P_l(\cos \theta) \ F_{1,l} e^{i\delta_l}, \quad \frac{F_{2(3)}}{m_K^2} = \sum_{l=0}^{\infty} P'_l(\cos \theta) \ F_{2(3),l} e^{i\delta_l}
\]

Expression for \(F, G, H\) form factors:

\[
F = F_s e^{i\delta_{fs}} + (F_p e^{i\delta_{fp}} \cos \theta + F_d e^{i\delta_{fd}} \cos^2 \theta + \ldots), \quad G = G_p e^{i\delta_{gp}} + (G_d e^{i\delta_{gd}} \cos \theta + \ldots), \quad H = H_p e^{i\delta_{hp}} + (H_d e^{i\delta_{hd}} \cos \theta + \ldots)
\]

S-wave term (only term for \(K_{e4}^{00}\) mode) contribution:

\[
F_s = \left(f_s + f'_s q^2 + f''_s q^4 + f_e \left(\frac{S_e}{4m_{\pi^+}^2} \right) \right) e^{i\delta_0}, \quad q = \sqrt{\frac{S_{\pi^0} - 4m_{\pi^+}^2}{4m_{\pi^+}^2}}
\]

Integration of \(J_3\) over \(\cos \theta\) and \(\phi\):

\[
J_3 = |XF_s|^2 (1 - \cos 2\theta_e) = 2 |XF_s|^2 \sin^2 \theta_e,
\]

Differential rate:

\[
d^3\Gamma = \frac{G_F^2 |V_{us}|^2}{2(4\pi)^6 m_K^5} \rho(S_{\pi^0}, S_e) J_3(S_{\pi^0}, S_e, \cos \theta_e) \times dS_{\pi^0} dS_e d\cos \theta_e.
\]
Partial wave expansion:

\[
\frac{F_1}{m_K^2} = \sum_{l=0}^{\infty} P_l(\cos \theta_\pi) \ F_{1,l} e^{i \delta_l}, \quad \frac{F_{2(3)}}{m_K^2} = \sum_{l=0}^{\infty} P'_l(\cos \theta_\pi) \ F_{2(3),l} e^{i \delta_l}
\]

Expression for \(F, G, H \) form factors:

\[
F = F_s e^{i \delta_{fs}} + (F_p e^{i \delta_{fp}} \cos \theta_\pi + F_d e^{i \delta_{fd}} \cos^2 \theta_\pi + \ldots),
G = G_p e^{i \delta_{gp}} + (G_d e^{i \delta_{gd}} \cos \theta_\pi + \ldots), \quad H = H_p e^{i \delta_{hp}} + (H_d e^{i \delta_{hd}} \cos \theta_\pi + \ldots)
\]

S-wave term (only term for \(K_{e4}^{00} \) mode) contribution:

\[
F_s = \left(f_s + f'_s q^2 + f''_s q^4 + f_e \left(\frac{S_e}{4m_{\pi^+}^2} \right) \right) e^{i \delta_0}, \quad q = \sqrt{\frac{S_{\pi} - 4m_{\pi^+}^2}{4m_{\pi^+}^2}}
\]

Integration of \(J_5 \) over \(\cos \theta_\pi \) and \(\phi \):

\[
J_3 = |XF_s|^2 (1 - \cos 2\theta_e) = 2 |XF_s|^2 \sin^2 \theta_e,
\]

Differential rate:

\[
d^3\Gamma = \frac{G_F^2 |V_{us}|^2}{2(4\pi)^6 m_K^5} \rho(S_{\pi}, S_e) J_3(S_{\pi}, S_e, \cos \theta_e) \times dS_{\pi} dS_e d \cos \theta_e.
\]
Partial wave expansion:
\[
\frac{F_1}{m_K^2} = \sum_{l=0}^{\infty} P_l(\cos \theta) F_{1,l} e^{i\delta_l}, \quad \frac{F_{2(3)}}{m_K^2} = \sum_{l=0}^{\infty} P_l'(\cos \theta) F_{2(3),l} e^{i\delta_l}
\]

Expression for \(F, G, H\) form factors:
\[
F = F_s e^{i\delta_f} + (F_p e^{i\delta_f} \cos \theta + F_d e^{i\delta_d} \cos^2 \theta + \ldots), \quad G = G_p e^{i\delta_g} + (G_d e^{i\delta_d} \cos \theta + \ldots), \quad H = H_p e^{i\delta_h} + (H_d e^{i\delta_d} \cos \theta + \ldots)
\]

S-wave term (only term for \(K_{e4}^{00}\) mode) contribution:
\[
F_s = \left(f_s + f'_s q^2 + f''_s q^4 + f_e \left(\frac{S_e}{4m_{\pi^+}^2} \right) \right) e^{i\delta_0}, \quad q = \sqrt{\frac{S_{\pi^+} - 4m_{\pi^+}^2}{4m_{\pi^+}^2}}
\]

Integration of \(J_5\) over \(\cos \theta\) and \(\phi\):
\[
J_3 = |XF_s|^2 (1 - \cos 2\theta_e) = 2|XF_s|^2 \sin^2 \theta_e,
\]

Differential rate:
\[
d^3\Gamma = \frac{G_F^2 |V_{us}|^2}{2(4\pi)^6 m_K^5} \rho(S_{\pi^+}, S_e) J_3(S_{\pi^+}, S_e, \cos \theta_e) \times dS_{\pi^+} dS_e d\cos \theta_e.
\]
Partial wave expansion:

\[
\frac{F_1}{m_K^2} = \sum_{l=0}^{\infty} P_l(\cos \theta) F_{1,l} e^{i\delta_l}, \quad \frac{F_{2(3)}}{m_K^2} = \sum_{l=0}^{\infty} P'_l(\cos \theta) F_{2(3),l} e^{i\delta_l}
\]

Expression for \(F, G, H \) form factors:

\[
F = F_s e^{i\delta_{fs}} + (F_p e^{i\delta_{fp}} \cos \theta + F_d e^{i\delta_{fd}} \cos^2 \theta + \ldots),
G = G_p e^{i\delta_{gp}} + (G_d e^{i\delta_{gd}} \cos \theta + \ldots), \quad H = H_p e^{i\delta_{hp}} + (H_d e^{i\delta_{hd}} \cos \theta + \ldots)
\]

S-wave term (only term for \(K_{e4}^{00} \) mode) contribution:

\[
F_s = \left(f_s + f'_s q^2 + f''_s q^4 + f_e \left(\frac{S_e}{4m_{\pi^+}^2} \right) \right) e^{i\delta_0}, \quad q = \sqrt{\frac{S_\pi - 4m_{\pi^+}^2}{4m_{\pi^+}^2}}
\]

Integration of \(J_5 \) over \(\cos \theta \) and \(\phi \):

\[
J_3 = |XF_s|^2 (1 - \cos 2\theta) = 2 |XF_s|^2 \sin^2 \theta_e,
\]

Differential rate:

\[
d^3\Gamma = \frac{G_F^2 |V_{us}|^2}{2(4\pi)^6 m_K^5} \rho(S_\pi, S_e) J_3(S_\pi, S_e, \cos \theta_e) \times dS_\pi dS_e d \cos \theta_e.
\]
Current experimental status of K_{e4}^{00}

1. Measurements done by other experiments
 - 37 events from three different experiments: $\text{BR} = (2.2 \pm 0.4) \cdot 10^{-5}$
 - 214 events from KEK E470: $\text{BR} = (2.29 \pm 0.34) \cdot 10^{-5}$
 - error dominated by systematics
 - No form factor determination so far, just a relation between partial rate and a constant form factor value: $\Gamma = 0.8|V_{us} \cdot F|^2 \cdot 10^3 s^{-1}$

2. Theoretical predictions for BR
 - Isospin symmetry relates more precisely measured modes and predicts:
 $\Gamma(K_{e4}^{+-}) = 1/2\Gamma(K_{e4}^{0\pm}) + 2\Gamma(K_{e4}^{00})$
 Considering the different mean lifetimes τ_{K^+}, τ_{K^0}, this results in:
 $\text{BR}(K_{e4}^{+-}) - 2\text{BR}(K_{e4}^{00}) - \frac{1}{2} \text{BR}(K_{e4}^{0\pm}) \frac{\tau_{K^+}}{\tau_{K^0}} = (-0.772 \pm 0.801) \cdot 10^{-2}$,
 where the error is dominated by K_{e4}^{00}
 - χPT calculations $O(p^2, p^4, p^6)$ from Bijnens Colangelo Gasser (1994) using K_{e4}^{+-} form factors from 1977 predicts:
 $\text{BR}(K_{e4}^{00}) = (2.01 \pm 0.11) \cdot 10^{-5}$

Michal Zamkovský on behalf of NA48/2 collaboration
Studies of the K_{e4} decay at NA48/2
Current experimental status of K_{e4}^{00}

1. Measurements done by other experiments
 - 37 events from three different experiments: $\text{BR} = (2.2 \pm 0.4) \cdot 10^{-5}$
 - 214 events from KEK E470: $\text{BR} = (2.29 \pm 0.34) \cdot 10^{-5}$
 error dominated by systematics
 - No form factor determination so far, just a relation between partial rate and a constant form factor value: $\Gamma = 0.8 |V_{us} \cdot F|^2 \cdot 10^3 s^{-1}$

2. Theoretical predictions for BR
 - Isospin symmetry relates more precisely measured modes and predicts:
 $\Gamma(K^+_L) = 1/2 \Gamma(K^{0\pm}_L) + 2 \Gamma(K^{00}_L)$
 Considering the different mean lifetimes τ_{K^+}, τ_{K^0}, this results in:
 $$\text{BR}(K^+_e) - 2\text{BR}(K^{00}_e) - \frac{1}{2} \text{BR}(K^{0\pm}_e) \frac{\tau_{K^+}}{\tau_{K^0}} = (-0.772 \pm 0.801) \cdot 10^{-2},$$
 where the error is dominated by K^{00}_e
 - χPT calculations $O(p^2, p^4, p^6)$ from Bijnens Colangelo Gasser (1994) using $K^{0\pm}_e$ form factors from 1977 predicts:
 $\text{BR}(K^{00}_e) = (2.01 \pm 0.11) \cdot 10^{-5}$
Current experimental status of K_{e4}^{00}

Measurements done by other experiments
- 37 events from three different experiments: $BR = (2.2 \pm 0.4) \cdot 10^{-5}$
- 214 events from KEK E470: $BR = (2.29 \pm 0.34) \cdot 10^{-5}$
 error dominated by systematics
- No form factor determination so far, just a relation between partial rate and a constant form factor value: $\Gamma = 0.8|V_{us} \cdot F|^2 \cdot 10^3 s^{-1}$

Theoretical predictions for BR
- Isospin symmetry relates more precisely measured modes and predicts:
 $\Gamma(K_{\mu4}^{\pm}) = 1/2\Gamma(K_{\mu4}^{0\pm}) + 2\Gamma(K_{\mu4}^{00})$
 Considering the different mean lifetimes τ_{K^+}, $\tau_{K^0_L}$, this results in:
 $BR(K_{e4}^{+-}) - 2BR(K_{e4}^{00}) - \frac{1}{2} BR(K_{e4}^{0\pm}) \frac{\tau_{K^{\pm}}}{\tau_{K^0_L}} = (-0.772 \pm 0.801) \cdot 10^{-2}$,
 where the error is dominated by K_{e4}^{00}
- χ^2PT calculations $O(p^2, p^4, p^6)$ from Bijnens Colangelo Gasser (1994) using K_{e4}^{+-} form factors from 1977 predicts:
 $BR(K_{e4}^{00}) = (2.01 \pm 0.11) \cdot 10^{-5}$
Current experimental status of K_{e4}^{00}

1. Measurements done by other experiments
 - 37 events from three different experiments: $\text{BR} = (2.2 \pm 0.4) \cdot 10^{-5}$
 - 214 events from KEK E470: $\text{BR} = (2.29 \pm 0.34) \cdot 10^{-5}$
 error dominated by systematics
 - No form factor determination so far, just a relation between partial rate and a constant form factor value: $\Gamma = 0.8 |V_{us} \cdot F|^2 \cdot 10^3 \text{s}^{-1}$

2. Theoretical predictions for BR
 - Isospin symmetry relates more precisely measured modes and predicts:
 $\Gamma(K_{e4}^{+-}) = 1/2 \Gamma(K_{e4}^{0\pm}) + 2 \Gamma(K_{e4}^{00})$
 Considering the different mean lifetimes $\tau_{K^+}, \tau_{K^0_L}$, this results in:
 $\text{BR}(K_{e4}^{+-}) - 2\text{BR}(K_{e4}^{00}) - \frac{1}{2} \text{BR}(K_{e4}^{0\pm}) \frac{\tau_{K^{0\pm}}}{\tau_{K^0_L}} = (-0.772 \pm 0.801) \cdot 10^{-2}$
 where the error is dominated by K_{e4}^{00}
 - χPT calculations $O(p^2, p^4, p^6)$ from Bijnens Colangelo Gasser (1994) using K_{e4}^{+-} form factors from 1977 predicts:
 $\text{BR}(K_{e4}^{00}) = (2.01 \pm 0.11) \cdot 10^{-5}$
Current experimental status of K^{00}_{e4}

1. Measurements done by other experiments
 - 37 events from three different experiments: $\text{BR} = (2.2 \pm 0.4) \cdot 10^{-5}$
 - 214 events from KEK E470: $\text{BR} = (2.29 \pm 0.34) \cdot 10^{-5}$
 - error dominated by systematics
 - No form factor determination so far, just a relation between partial rate and a constant form factor value: $\Gamma = 0.8 |V_{us} \cdot F|^{2} \cdot 10^{3} \text{s}^{-1}$

2. Theoretical predictions for BR
 - Isospin symmetry relates more precisely measured modes and predicts:
 $$\Gamma(K_{l4}^{+/-}) = \frac{1}{2} \Gamma(K_{l4}^{0\pm}) + 2 \Gamma(K_{l4}^{00})$$
 Considering the different mean lifetimes τ_{K^+}, $\tau_{K^0_{L}}$, this results in:
 $$\text{BR}(K_{e4}^{+/-}) - 2\text{BR}(K_{e4}^{00}) - \frac{1}{2} \text{BR}(K_{e4}^{0\pm}) \frac{\tau_{K^\pm}}{\tau_{K^0_{L}}} = (-0.772 \pm 0.801) \cdot 10^{-2}$$
 - where the error is dominated by K_{e4}^{00}
 - χPT calculations $O(p^2, p^4, p^6)$ from Bijnens Colangelo Gasser (1994) using $K_{e4}^{+/-}$ form factors from 1977 predicts:
 $$\text{BR} (K_{e4}^{00}) = (2.01 \pm 0.11) \cdot 10^{-5}$$
Current experimental status of K_{e4}^{00}

1. Measurements done by other experiments
 - 37 events from three different experiments: $\text{BR} = (2.2 \pm 0.4) \cdot 10^{-5}$
 - 214 events from KEK E470: $\text{BR} = (2.29 \pm 0.34) \cdot 10^{-5}$
 - error dominated by systematics
 - No form factor determination so far, just a relation between partial rate and a constant form factor value: $\Gamma = 0.8|V_{us} \cdot F|^2 \cdot 10^3 s^{-1}$

2. Theoretical predictions for BR
 - Isospin symmetry relates more precisely measured modes and predicts:
 \[\Gamma(K_{I4}^{+\pm}) = \frac{1}{2} \Gamma(K_{I4}^{0\pm}) + 2 \Gamma(K_{I4}^{00}) \]
 - Considering the different mean lifetimes τ_{K^+}, $\tau_{K_L^0}$, this results in:
 \[\text{BR}(K_{e4}^{+\pm}) - 2 \text{BR}(K_{e4}^{00}) - \frac{1}{2} \text{BR}(K_{e4}^{0\pm}) \frac{\tau_{K^\pm}}{\tau_{K_L^0}} = (-0.772 \pm 0.801) \cdot 10^{-2}, \]
 where the error is dominated by K_{e4}^{00}
 - $\chi^P T$ calculations $O(p^2, p^4, p^6)$ from Bijnens Colangelo Gasser (1994) using $K_{e4}^{+\pm}$ form factors from 1977 predicts:
 \[\text{BR} (K_{e4}^{00}) = (2.01 \pm 0.11) \cdot 10^{-5} \]

Michal Zamkovský on behalf of NA48/2 collaboration
Studies of the K_{e4} decay at NA48/2
Current experimental status of K_{e4}^{00}

1. Measurements done by other experiments
 - 37 events from three different experiments: $\text{BR} = (2.2 \pm 0.4) \cdot 10^{-5}$
 - 214 events from KEK E470: $\text{BR} = (2.29 \pm 0.34) \cdot 10^{-5}$
 error dominated by systematics
 - No form factor determination so far, just a relation between partial rate and a constant form factor value: $\Gamma = 0.8 |V_{us} \cdot F|^2 \cdot 10^3 \text{s}^{-1}$

2. Theoretical predictions for BR
 - Isospin symmetry relates more precisely measured modes and predicts:
 $$\Gamma(K_{e4}^{+}) = 1/2 \Gamma(K_{e4}^{0\pm}) + 2 \Gamma(K_{e4}^{00})$$
 Considering the different mean lifetimes τ_{K^+}, $\tau_{K^0_L}$, this results in:
 $$\text{BR}(K_{e4}^{+}) - 2\text{BR}(K_{e4}^{00}) - \frac{1}{2} \text{BR}(K_{e4}^{0\pm}) \frac{\tau_{K^+}}{\tau_{K^0_L}} = (-0.772 \pm 0.801) \cdot 10^{-2},$$
 where the error is dominated by K_{e4}^{00}
 - χPT calculations $O(p^2, p^4, p^6)$ from Bijnens Colangelo Gasser (1994)
 using K_{e4}^{+} form factors from 1977 predicts:
 $$\text{BR } (K_{e4}^{00}) = (2.01 \pm 0.11) \cdot 10^{-5}$$
Event selection

1. Final state with one charged track and four photons from π^0’s pointing to the same vertex
2. Common selection for signal K_{e4}^{00} and normalization $K_{3\pi}^{00}$
3. Separation based on kinematics - missing transverse momentum for signal candidates in $(M_{\pi\pi}, p_T)$ plane
4. Particle ID against background
Event selection

1. Final state with one charged track and four photons from π^0's pointing to the same vertex

2. Common selection for signal K_{e4}^{00} and normalization $K_{3\pi}^{00}$

3. Separation based on kinematics - missing transverse momentum for signal candidates in $(M_{\pi\pi}, p_T)$ plane

4. Particle ID against background

Michal Zamkovský on behalf of NA48/2 collaboration

Studies of the K_{e4} decay at NA48/2
Event selection

1. Final state with one charged track and four photons from π^0's pointing to the same vertex
2. Common selection for signal K_{e4}^{00} and normalization $K_{3\pi}^{00}$
3. Separation based on kinematics - missing transverse momentum for signal candidates in $(M_{\pi\pi}, p_T)$ plane
4. Particle ID against background

Michal Zamkovský on behalf of NA48/2 collaboration

Studies of the K_{e4} decay at NA48/2
Event selection

1. Final state with one charged track and four photons from π^0’s pointing to the same vertex
2. Common selection for signal K_{e4}^{00} and normalization $K_{3\pi}^{00}$
3. Separation based on kinematics - missing transverse momentum for signal candidates in $(M_{\pi\pi}, p_T)$ plane
4. Particle ID against background

Michal Zamkovský on behalf of NA48/2 collaboration

Studies of the K_{e4} decay at NA48/2
Fit performed in 2D plane \((S_\pi, S_e)\) after background subtraction

The event density in the Dalitz plot is proportional to the S-wave axial vector form factor \(F_s^2\)

Fitting ten equal population bins for \(S_\pi\) above \(4m_{\pi^+}^2\) and two bins below

Fitting procedure for \(K{e4}^{00}\)_.

Michal Zamkovský on behalf of NA48/2 collaboration

Studies of the \(K_{e4}\) decay at NA48/2
Fit performed in 2D plane (S_π, S_e) after background subtraction

The event density in the Dalitz plot is proportional to the S-wave axial vector form factor F_s^2

Fitting ten equal population bins for S_π above $4m_{\pi^+}^2$ and two bins below m_{π^+}.
Fitting procedure for K_{e4}^{00}

- Fit performed in 2D plane (S_π, S_e) after background subtraction
- The event density in the Dalitz plot is proportional to the S-wave axial vector form factor F_s^2
- Fitting ten equal population bins for S_π above $4m_{\pi^+}^2$ and two bins below

Data – Bkg

Studies of the K_{e4} decay at NA48/2
Fitting procedure for K_{e4}^{00}

1. $F_s = \left(1 + a q^2 + b q^4 + c \left(\frac{S_e}{4 m_{\pi^+}^2}\right)\right)$ \quad $q^2 \geq 0$

2. $F_s = \left(1 + d \sqrt{|q^2/(1 + q^2)|} + c \left(\frac{S_e}{4 m_{\pi^+}^2}\right)\right)$ \quad $q^2 < 0$

3. Cusp singularity at $q^2 = (S_\pi/4 m_{\pi^+}^2 - 1) = 0$

4. Comparison of K_{e4}^{+-} and K_{e4}^{00} modes

Michal Zamkovský on behalf of NA48/2 collaboration

Studies of the K_{e4} decay at NA48/2
Fitting procedure for K_{e4}^{00}

1. $F_s = \left(1 + aq^2 + bq^4 + c \left(\frac{S_{e}}{4m_{\pi}^2}\right)\right)$ \quad q^2 \geq 0

2. $F_s = \left(1 + d \sqrt{|q^2/(1 + q^2)|} + c \left(\frac{S_{e}}{4m_{\pi}^2}\right)\right)$ \quad q^2 < 0

- cusp singularity at $q^2 = \left(S_{\pi}/4m_{\pi}^2 - 1\right) = 0$
- comparison of K_{e4}^{+} and K_{e4}^{0} modes
Fitting procedure for K_{e4}^{00}

1. $F_s = \left(1 + a q^2 + b q^4 + c \left(\frac{S_e}{4 m_{\pi^+}^2} \right) \right)$ \quad $q^2 \geq 0$

2. $F_s = \left(1 + d \sqrt{|q^2/(1+q^2)|} + c \left(\frac{S_e}{4 m_{\pi^+}^2} \right) \right)$ \quad $q^2 < 0$

3. Cusp singularity at $q^2 = (S_\pi/4 m_{\pi^+}^2 - 1) = 0$

4. Comparison of K_{e4}^{+-} and K_{e4}^{00} modes

$\left(\frac{F_s}{f_s} \right)^2 / N$

q^2

Michal Zamkovský on behalf of NA48/2 collaboration

Studies of the K_{e4} decay at NA48/2
Fitting procedure for K_{e4}^{00}

1. $F_s = \left(1 + a q^2 + b q^4 + c \left(\frac{S_\pi}{4 m^2_{\pi^+}}\right)\right) \quad q^2 \geq 0$

2. $F_s = \left(1 + d \sqrt{|q^2/(1 + q^2)|} + c \left(\frac{S_\pi}{4 m^2_{\pi^+}}\right)\right) \quad q^2 < 0$

3. Cusp singularity at $q^2 = \left(S_\pi/4 m^2_{\pi^+} - 1\right) = 0$

4. Comparison of $K_{e4}^{+−}$ and K_{e4}^{00} modes

Fit results for K_{e4}^{00}

- $a = 0.149 \pm 0.033$
- $b = -0.070 \pm 0.039$
- $c = 0.113 \pm 0.022$
- $d = -0.256 \pm 0.049$
Fitting procedure for K_{e4}^{00}

1. \[F_s = \left(1 + a q^2 + b q^4 + c \left(\frac{S_e}{4 m^2_{\pi^+}} \right) \right) \quad q^2 \geq 0 \]

2. \[F_s = \left(1 + d \sqrt{|q^2/(1 + q^2)|} + c \left(\frac{S_e}{4 m^2_{\pi^+}} \right) \right) \quad q^2 < 0 \]

3. Cusp singularity at $q^2 = (S_\pi/4 m^2_{\pi^+} - 1) = 0$

4. Comparison of K_{e4}^{+-} and K_{e4}^{00} modes

Fit results for K_{e4}^{00}

- $a = 0.149 \pm 0.033$
- $b = -0.070 \pm 0.039$
- $c = 0.113 \pm 0.022$
- $d = -0.256 \pm 0.049$
\(\pi^- \pi^- re-scattering \)

1. \((K^+ \rightarrow \pi^0 \pi^0 l^\pm \nu)\) decay amplitude: \(\mathcal{M} = \mathcal{M}_0 + \mathcal{M}_1\)

2. The unperturbed amplitude \(\mathcal{M}_0\) corresponds to the tree level:

\[
\mathcal{M}_0 = f_{s0} \left(1 + a q^2 + b q^4 + c \frac{S_e}{4m_{\pi^+}^2} \right)
\]

3. One loop contribution through \(\pi^+ \pi^- \rightarrow \pi^0 \pi^0\) charge exchange \(\mathcal{M}_1\):
 - conserved isospin symmetry \((m_{\pi^+} = m_{\pi^0})\):
 \[
 \mathcal{M}_1 = -2 a_0^0 - a_2^0 f_s \sqrt{|q^2| \left(1 + q^2 \right)} \quad q^2 = \frac{S_\pi - 4m_{\pi^+}^2}{4m_{\pi^+}^2}
 \]
 - broken isospin symmetry \((m_{\pi^+} \neq m_{\pi^0})\): More elaborated calculation
\(\pi - \pi \) re-scattering

1. \((K^+ \to \pi^0\pi^0l^\pm \nu) \) decay amplitude: \(M = M_0 + M_1 \)
2. The unperturbed amplitude \(M_0 \) corresponds to the tree level:

\[
M_0 = f_s_0 \left(1 + aq^2 + bq^4 + c \frac{S_e}{4m_{\pi^+}^2} \right)
\]

3. One loop contribution through \(\pi^+\pi^- \to \pi^0\pi^0 \) charge exchange \(M_1 \):
 - conserved isospin symmetry \((m_{\pi^+} = m_{\pi^0}) \):
 \[
 M_1 = -2 \frac{a_0^0 - a_2^0}{3} f_s \sqrt{q^2 \left| \frac{1 + q^2}{1 - q^2} \right|}, \quad q^2 = \frac{S_\pi - 4m_{\pi^+}^2}{4m_{\pi^+}^2}
 \]
 - broken isospin symmetry \((m_{\pi^+} \neq m_{\pi^0}) \): More elaborated calculation
\(\pi - \pi \) re-scattering

1. \((K^+ \rightarrow \pi^0\pi^0l^\pm\nu)\) decay amplitude: \(\mathcal{M} = \mathcal{M}_0 + \mathcal{M}_1 \)
2. The unperturbed amplitude \(\mathcal{M}_0 \) corresponds to the tree level:

\[
\mathcal{M}_0 = f_{s0} \left(1 + aq^2 + bq^4 + c \frac{S_e}{4m^2_{\pi^+}} \right)
\]

3. One loop contribution through \(\pi^+\pi^- \rightarrow \pi^0\pi^0 \) charge exchange \(\mathcal{M}_1 \):
 - conserved isospin symmetry \((m_{\pi^+} = m_{\pi^0})\):
 \[
 \mathcal{M}_1 = -2a_0^0 - a_2^2 f_s \sqrt{\frac{q^2}{1 + q^2}}, \quad q^2 = \frac{S_{\pi} - 4m^2_{\pi^+}}{4m^2_{\pi^+}}
 \]
 - broken isospin symmetry \((m_{\pi^+} \neq m_{\pi^0})\): More elaborated calculation

Michal Zamkovský on behalf of NA48/2 collaboration
Studies of the KE4 decay at NA48/2
\(\pi^- \pi^- \) re-scattering

1. \((K^+ \rightarrow \pi^0\pi^0 l^\pm \nu)\) decay amplitude: \(\mathcal{M} = \mathcal{M}_0 + \mathcal{M}_1 \)

2. The unperturbed amplitude \(\mathcal{M}_0 \) corresponds to the tree level:

\[
\mathcal{M}_0 = f_{s0} \left(1 + a q^2 + b q^4 + c \frac{S_e}{4 m^2_{\pi^+}} \right)
\]

3. One loop contribution through \(\pi^+\pi^- \rightarrow \pi^0\pi^0 \) charge exchange \(\mathcal{M}_1 \):
 - conserved isospin symmetry \((m_{\pi^+} = m_{\pi^0}) \):
 \[
 \mathcal{M}_1 = -2 \frac{a^0_0 - a^0_2}{3} f_s \sqrt{\left| \frac{q^2}{1 + q^2} \right|}, \quad q^2 = \frac{S_{\pi} - 4 m^2_{\pi^+}}{4 m^2_{\pi^+}}
 \]
 - broken isospin symmetry \((m_{\pi^+} \neq m_{\pi^0}) \): More elaborated calculation

Michal Zamkovský on behalf of NA48/2 collaboration

Studies of the \(K_{e4} \) decay at NA48/2
\(K^+ \to \pi^0 \pi^0 l^{\pm} \nu \) decay amplitude: \(\mathcal{M} = \mathcal{M}_0 + \mathcal{M}_1 \)

The unperturbed amplitude \(\mathcal{M}_0 \) corresponds to the tree level:

\[
\mathcal{M}_0 = f_{s0} \left(1 + a q^2 + b q^4 + c \frac{S_e}{4m_{\pi^+}^2} \right)
\]

One loop contribution through \(\pi^+ \pi^- \to \pi^0 \pi^0 \) charge exchange \(\mathcal{M}_1 \):

- conserved isospin symmetry \((m_{\pi^+} = m_{\pi^0}) \):

\[
\mathcal{M}_1 = -2 \frac{a_0 - a_2}{3} f_{s} \sqrt{\frac{q^2}{1 + q^2}}, \quad q^2 = \frac{S_{\pi} - 4m_{\pi^+}^2}{4m_{\pi^+}^2}
\]

- broken isospin symmetry \((m_{\pi^+} \neq m_{\pi^0}) \): More elaborated calculation

Michal Zamkovský on behalf of NA48/2 collaboration

Studies of the \(K_{e4} \) decay at NA48/2
The amplitude M_1 changes from real to imaginary at $2m_{\pi^+}$ with the consequence that M_1 interferes destructively with M_0 in the region below $2m_{\pi^+}$ threshold, while it adds quadratically above it:

$$|M|^2 = |M_0 + iM_1|^2 = |M_0|^2 + |M_1|^2,$$
above threshold

$$|M|^2 = |M_0 + M_1|^2 = |M_0|^2 + |M_1|^2 + 2|M_0||M_1|,$$
below threshold
Related measurements on NA48 experiment

Isospin correction - χPT approach
Colangelo Gasser Rusetsky
EPJ C59, 777(2009)

\[\delta = \frac{1}{32\pi F^2} \left\{ (4\Delta_\pi + s)\sigma + (s - M_{\pi^0}^2) \left(1 + \frac{3}{2R} \right) \sigma_0 \right\} - \delta_1 + O(p^4) \]

where

\[\Delta_\pi = M_{\pi^+}^2 - M_{\pi^0}^2, \quad \sigma = \sqrt{1 - \frac{4M_\pi}{s}}, \quad R = \frac{m_s - \tilde{m}}{m_d - m_u} \]
Related measurements on NA48 experiment

Isospin correction - χPT approach
Colangelo Gasser Rusetsky
EPJ C59, 777 (2009)

$$\delta = \frac{1}{32\pi F^2} \left\{ (4\Delta \pi + s)\sigma + (s - M_{\pi^0}^2) \left(1 + \frac{3}{2R}\right) \sigma_0 \right\} - \delta_0^1 + O(p^4)$$

where

$$\Delta \pi = M_{\pi^+}^2 - M_{\pi^0}^2, \quad \sigma = \sqrt{1 - \frac{4M_{\pi^0}}{s}}, \quad R = \frac{m_s - \hat{m}}{m_d - m_u}$$

Studies of the K_{e4} decay at NA48/2

Michal Zamkovský on behalf of NA48/2 collaboration
Branching ratio measurement:

\[
\text{BR} \left(K_{e4}^0 \right) = \frac{N \left(K_{e4}^0 \right)}{N \left(K_{3\pi}^0 \right)} \cdot \frac{A \left(K_{3\pi}^0 \right)}{A \left(K_{e4}^0 \right)} \cdot \frac{\epsilon \left(K_{3\pi}^0 \right)}{\epsilon \left(K_{e4}^0 \right)} \cdot \text{BR} \left(K_{3\pi}^0 \right)
\]

Result:

\[
\text{BR} \left(K_{e4}^0 \right) = (2.552 \pm 0.010_{\text{stat}} \pm 0.010_{\text{syst}} \pm 0.032_{\text{ext}}) \times 10^{-5}
\]

\[
\text{BR} \left(K_{3\pi}^0 \right) = (1.761 \pm 0.022) \times 10^{-2}
\]
Branching ratio measurement:

\[
\text{BR} \left(K_{e4}^{00} \right) = \frac{N \left(K_{e4}^{00} \right)}{N \left(K_{3\pi}^{00} \right)} \cdot \frac{A \left(K_{3\pi}^{00} \right)}{A \left(K_{e4}^{00} \right)} \cdot \frac{\epsilon \left(K_{3\pi}^{00} \right)}{\epsilon \left(K_{e4}^{00} \right)} \cdot \text{BR} \left(K_{3\pi}^{00} \right)
\]

Result

\[
\text{BR}(K_{3\pi}^{00}) = (1.761 \pm 0.022) \times 10^{-2}
\]

\[
\text{BR}(K_{e4}^{00}) = (2.552 \pm 0.010_{\text{stat}} \pm 0.010_{\text{syst}} \pm 0.032_{\text{ext}}) \times 10^{-5}
\]
Branching ratio measurement

Branching ratio measurement:

\[
\text{BR}(K_{e4}^{00}) = \frac{N(K_{e4}^{00})}{N(K_{3\pi}^{00})} \cdot \frac{A(K_{3\pi}^{00})}{A(K_{e4}^{00})} \cdot \frac{\epsilon(K_{3\pi}^{00})}{\epsilon(K_{e4}^{00})} \cdot \text{BR}(K_{3\pi}^{00})
\]

Result

\[
\text{BR}(K_{3\pi}^{00}) = (2.552 \pm 0.010_{\text{stat}} \pm 0.010_{\text{syst}} \pm 0.032_{\text{ext}}) \times 10^{-5}
\]

\[
\text{BR}(K_{e4}^{00}) = (1.761 \pm 0.022) \times 10^{-2}
\]

<table>
<thead>
<tr>
<th>Source</th>
<th>(\delta\text{BR}/\text{BR} \times 10^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Background and electron-ID</td>
<td>0.25</td>
</tr>
<tr>
<td>Radiative events modeling</td>
<td>0.19</td>
</tr>
<tr>
<td>Form factor uncertainty</td>
<td>0.17</td>
</tr>
<tr>
<td>Acceptance stability</td>
<td>0.16</td>
</tr>
<tr>
<td>Level 2 Trigger cut</td>
<td>0.04</td>
</tr>
<tr>
<td>Simulation statistics</td>
<td>0.07</td>
</tr>
<tr>
<td>Trigger efficiency</td>
<td>0.03</td>
</tr>
<tr>
<td>Total systematics</td>
<td>0.40</td>
</tr>
<tr>
<td>External error from BR((K_{3\pi}^{00}))</td>
<td>1.25</td>
</tr>
<tr>
<td>Statistical error</td>
<td>0.39</td>
</tr>
</tbody>
</table>
Sample of 65000 K^{00}_{e4} reconstructed events has been studied (JHEP 08 (2014) 159)

- First measurement of form factor F_s parametrized by described a, b, c, d constants obtained from the fit in (S_π, S_e) plane
- Significantly improved precision of BR measurement
- Observation of the cusp singularity which can be related to $\pi - \pi$ scattering - consistent with a_0^0, a_2^0 values measured in $K^{\pm-}_{e4}$ mode

Prospects

- NA62 is starting data taking (see Augusto Ceccucci talk in plenary session)
- Lots of kaon decays expected in the next years (2015-2018)
- Suggestions of deeper studies welcome
Sample of 65000 K_{e4}^{00} reconstructed events has been studied (JHEP 08 (2014) 159)

- First measurement of form factor F_s parametrized by described a, b, c, d constants obtained from the fit in (S_π, S_e) plane
- Significantly improved precision of BR measurement
- Observation of the cusp singularity which can be related to $\pi - \pi$ scattering - consistent with a_0^0, a_2^0 values measured in K_{e4}^{+-} mode

Prospects

- NA62 is starting data taking (see Augusto Ceccucci talk in plenary session)
- Lots of kaon decays expected in the next years (2015-2018)
- Suggestions of deeper studies welcome
Sample of 65000 K_{e4}^{00} reconstructed events has been studied (JHEP 08 (2014) 159)

- First measurement of form factor F_s parametrized by described a, b, c, d constants obtained from the fit in (S_{π}, S_e) plane
- Significantly improved precision of BR measurement
- Observation of the cusp singularity which can be related to $\pi - \pi$ scattering - consistent with a_0^0, a_2^0 values measured in $K_{e4}^{+\pi}$ mode

Prospects

- NA62 is starting data taking (see Augusto Ceccucci talk in plenary session)
- Lots of kaon decays expected in the next years (2015-2018)
- Suggestions of deeper studies welcome
Sample of 65000 K^{00}_{e4} reconstructed events has been studied (JHEP 08 (2014) 159)

- First measurement of form factor F_s parametrized by described a, b, c, d constants obtained from the fit in (S_π, S_e) plane
- Significantly improved precision of BR measurement
- Observation of the cusp singularity which can be related to $\pi - \pi$ scattering - consistent with a_0^0, a_2^0 values measured in K^{+-}_{e4} mode

Prospects

- NA62 is starting data taking (see Augusto Ceccucci talk in plenary session)
- Lots of kaon decays expected in the next years (2015-2018)
- Suggestions of deeper studies welcome
Sample of 65000 K_{e4}^{00} reconstructed events has been studied (JHEP 08 (2014) 159)

- First measurement of form factor F_s parametrized by described a, b, c, d constants obtained from the fit in (S_π, S_e) plane
- Significantly improved precision of BR measurement
- Observation of the cusp singularity which can be related to $\pi - \pi$ scattering - consistent with a_0^0, a_2^0 values measured in K_{e4}^{+-} mode

Prospects

- NA62 is starting data taking (see Augusto Ceccucci talk in plenary session)
- Lots of kaon decays expected in the next years (2015-2018)
- Suggestions of deeper studies welcome
Sample of 65000 K_{e4}^{00} reconstructed events has been studied (JHEP 08 (2014) 159)

- First measurement of form factor F_s parametrized by described a, b, c, d constants obtained from the fit in (S_π, S_e) plane
- Significantly improved precision of BR measurement
- Observation of the cusp singularity which can be related to $\pi - \pi$ scattering - consistent with a_0^0, a_2^0 values measured in K_{e4}^{+-} mode

Prospects

- NA62 is starting data taking (see Augusto Ceccucci talk in plenary session)
- Lots of kaon decays expected in the next years (2015-2018)
- Suggestions of deeper studies welcome
Sample of 65000 K_{e4}^{00} reconstructed events has been studied (JHEP 08 (2014) 159)

- First measurement of form factor F_s parametrized by described a, b, c, d constants obtained from the fit in (S_{π}, S_e) plane
- Significantly improved precision of BR measurement
- Observation of the cusp singularity which can be related to $\pi - \pi$ scattering - consistent with a_0^0, a_2^0 values measured in K_{e4}^{+-} mode

Prospects

- NA62 is starting data taking (see Augusto Ceccucci talk in plenary session)
- Lots of kaon decays expected in the next years (2015-2018)
 - Suggestions of deeper studies welcome
Summary and outlook

Sample of 65000 K^{00}_{e4} reconstructed events has been studied (JHEP 08 (2014) 159)

- First measurement of form factor F_s parametrized by described a, b, c, d constants obtained from the fit in (S_π, S_e) plane
- Significantly improved precision of BR measurement
- Observation of the cusp singularity which can be related to $\pi - \pi$ scattering - consistent with a_0^0, a_2^0 values measured in $K^{+ -}_{e4}$ mode

Prospects

- NA62 is starting data taking (see Augusto Ceccucci talk in plenary session)
- Lots of kaon decays expected in the next years (2015-2018)
- Suggestions of deeper studies welcome
Summary and outlook

Sample of 65000 K^{00}_{e4} reconstructed events has been studied (JHEP 08 (2014) 159)

- First measurement of form factor F_s parametrized by described a, b, c, d constants obtained from the fit in (S_π, S_e) plane
- Significantly improved precision of BR measurement
- Observation of the cusp singularity which can be related to $\pi - \pi$ scattering - consistent with a^0_0, a^0_2 values measured in $K^{+ -}_{e4}$ mode

Prospects

- NA62 is starting data taking (see Augusto Ceccucci talk in plenary session)
- Lots of kaon decays expected in the next years (2015-2018)
- Suggestions of deeper studies welcome

Thank you for the attention!

Michal Zamkovský on behalf of NA48/2 collaboration