ECN3
CERN North Area

STATUS OF NA62

CKM2016, TIFR, Mumbai, November 29, 2016
Augusto Ceccucci / CERN
on behalf of the NA62 Collaboration
NA62 COLLABORATION

29 Institutes, 230 Collaborators
Triumph of the CKM description

- All the flavour changing processes are described by the four parameters of the CKM mass mixing matrix (λ, A, ρ, η).

- From this plot, we know already either new physics energy scale is \gg TeV (far beyond LHC) or the flavour structure of new physics is very special.
New generation of Kaon experiments

From I. Shipsey ICHEP 2016 “Vision and Outlook”

My comment: experimental dream not afflicted by large theoretical errors
NA62 NOVEL IN-FLIGHT TECHNIQUE TO MEASURE $K^+ \rightarrow \pi^+ \nu \bar{\nu}$

- ~100 ps timing for $K^+ - \pi^+$ association (KTAG, GTK, RICH)
- EM Calorimeters to veto photons (LAV, LKr, SAC, IRC), hadron calorimeters (MUV1, MUV2, HASC) and hodoscopes to veto muons (MUV0, MUV3), extra particles (CHOD, NewCHOD) and interactions (CHANTI)
- Very light, high rate trackers to reconstruct the K^+ and the π^+ momenta (GTK, STRAW)
- Full particle identification (KTAG, RICH)
NA62 SCHEMATIC LAYOUT

10^{12} / s protons from SPS (400 GeV/c) on Be target (~1 λ)

SPS K12 Beam: 750 MHz, 75 GeV/c
• Positive polarity
• Kaon fraction ~6%
• Δ p/p ~ 1%
• Useful kaon decays ~10% (5 MHz)

Residual pressure in decay tank
~10^{-6} mbar

NA62 is built for a specific “silver bullet” measurement. This requires high beam rate, full PID, hermetic coverage, very light, high-rate tracking and state-of-the-art trigger and DAQ

It paves the way to a broad physics program in kaon decays (LFV, LU, CHPT) and beyond (HNL, Exotics, Dark Sector etc.)
For NA62 is essential to have a flat SPS slow extraction: both microscopically and macroscopically.

GTK: Si Pixel 300 micron * 300 micron

75 Gev/c beam

140 ps R.M.S.

RICH-KTAG
Three new detectors installed over the summer of 2016
All stations fully operational since 15/09/2016:

- Enabling technology: Si pixel (300 micron x 300 micron) with ~200 ps time resolution / station
- Flux up to one GHz of high energy hadrons over ~20 cm²
- Rate per mm² up to 1.4 MHz
- Triggerless readout

30/30 Cum Laude!
One track selection (OTS)

Single downstream track topology

Downstream track matching energy in calorimeters

Beam track matching the downstream track

Kaon ID

Beam track matching a K signal in Kaon ID

Decay vertex in the fiducial region (65 m).

Time resolutions:

Kaon ID < 100 ps

Beam track < 200 ps

Downstream track < 200 ps

Calorimeters 1-2 ns

Tracking Techniques:

Si-pixel tracker (beam);

Straw tube tracker in vacuum (downstream)

Goal:

$O(10^4 \div 10^5)$ suppression factor of the main kaon decay modes

$P_{\pi^+} < 35$ GeV/c: best $K^+ \rightarrow \mu^+ \nu$ suppression.

Kinematics studied on $K^+ \rightarrow \pi^+ \pi^0$ selected using LKr calorimeter.

$O(10^3)$ kinematic suppression factor measured.

K decay

$K^+ \rightarrow \pi^+ \pi^0$

$K^+ \rightarrow \mu^+ \nu$

$K^+ \rightarrow 3\pi$

$K^+ \rightarrow \pi^0 l^+ \nu$

2015 data

OTS + Kaon ID

OTS = One Track Selection

Single track tagged to originate from a kaon decay

Missing Mass Resolution for single track events
Technique: EM calorimeters exploiting correlations between g from π^0.

Goal: O(10^8) rejection p_0 from K^+o+p_0.

$P_{\pi^+} < P^{\text{MAX}}_{\pi^+}$

In situ/continuous monitor of π^0 rejection performed selecting $K^+\pi^+\pi^0$ events purely on kinematics.

Measured on data using K^+o+p_0 selected kinematically.

2015 measurement statistically and background limited.
• All the ingredients are in place to launch the assault to $K^+ \rightarrow \pi^+ \nu \nu$
• Moved from construction/commissioning to data taking/analysis
IMPROVED SHIELDING AND INTERLOCKS

- Proper shielding is crucial for the safety of the NA62 equipment and operation
- Several NA62 systems operate at rates where Single Event Effects due to HEH are expected

2015

2016

2.9x10^8 High Energy Hadrons (HEH)/cm²
Progress on NA62 Data Taking 2016

Running consistently at about 40% of nominal intensity
Limited by beam “Structures” (e.g. 10-30 Hz, 50 Hz, etc.)
Data taking for PNN + EXOTICS simultaneously
250 ktrigger / pulse on tape (corresponding to 14 KHz DC)
Second SPS spill since ~mid July
Three full GTK (no noise, 30/30 chips since September 15)

K-decays: extrapolation to end of 2018:
5*10^{11} / month * 12 months \approx 6 \times 10^{12}
\rightarrow With improved extraction and incremental improvements to the efficiency we can reach our target of 10^{13} K decays before LS2
Dimuon trigger, few % of the data, BR~9 10^{-8}

$K^+ \to \pi^+ \mu^+ \mu^-$

NA62 preliminary

700 $K_{\pi\mu\mu}$ events

$\sigma_M = 1.3$ MeV/c2

Mass resolution better by a factor ~ 2 with respect to NA48/2
Heavy neutral leptons in $K^+ \rightarrow l^+ N$

- Can also search for **HNL** in $K^+ \rightarrow l^+ N$ where N does not decay inside the detector fiducial volume.
- $K^+ \rightarrow l^+ N$ events would appear as peaks in the $K^+ \rightarrow l^+ \nu$ squared missing mass distribution.
- Searches are model independent.

Analysis underway with NA62 data from 2015.
Heavy neutral leptons in $K^+ \rightarrow l^+ N$

- Current experimental status: **most stringent constraints from kaon measurements**
- Expected SES with 2015 NA62 data at the level of 10^{-8} (similar for $K \rightarrow eN$ and $K \rightarrow \mu N$)

![Graph showing limits on $|\mu_{l\nu}|^2$ vs. m_l (GeV) and heavy neutrino mass GeV/c²)

- KEK (1982) - Expected sensitivity
- E949 (2015) - Single event sensitivity

2007 data
Approx. 10^{12} kaon decays collected in 2016
- Performed transition from commissioning to data taking/analysis
- Need stable FT extraction (no 10-30 Hz bump) and as many proton days as possible before LS2
- Incremental improvements to data taking efficiency, trigger and beam intensity planned for 2017 in order to fulfil our objective to collecting approx. 10^{13} kaon decays before LS2 \(\mathcal{O}(100) \) PNN SM events
- Several triggers collected simultaneously to address a broad physics portfolio
- There are plans to extend the experiment after LS2 to also explore the “Dark Sector” using the NA62 setup