Recent results from the NA62 experiment at CERN

Riccardo Aliberti
Johannes Gutenberg Universität - Mainz
(on behalf of the NA62 collaboration)

XXIV International Workshop on Deep-Inelastic Scattering and Related Subjects (DIS16)

Hamburg, 14/04/2016
The NA62 Experiment

Fixed Target Experiment

Located at the North Area of CERN

75 GeV/c Secondary Hadron Beam

Carry on the tradition of Kaon experiments at CERN - SPS
NA62 2007 Data Taking

NA48 Apparatus

Beam:
• Simultaneous K^\pm
• 74 GeV/c

Main Detectors:
• Magnetic Spectrometer
 $\sigma(P)/P = 0.48\% \oplus 0.009 P(\text{GeV/c})\%$
 $\sigma(P)/P @ 20 \text{ GeV/c} = 0.51\%$

• Hodoscope
 $\sigma(t) \approx 200 \text{ ps}$

• Liquid Krypton Calorimeter (LKr)
 $\sigma(E)/E = 3.2\% / \sqrt{E} \oplus 9\%/E \oplus 0.42\% \,(\text{GeV/c}^2)$
 $\sigma(E)/E @ 20 \text{ GeV/c}^2 = 0.94\%$
Transition Form Factor

\[\pi^0 \rightarrow \gamma \gamma^* \rightarrow \gamma e^+ e^- \]

\[\frac{1}{\Gamma (\pi^0_{2\gamma})} \frac{d\Gamma (\pi^0_D)}{dx} = \frac{2\alpha}{3\pi} \frac{(1 - x)^3}{x} \left(1 + \frac{r^2}{2x}\right) \sqrt{1 - \frac{r^2}{x}} \left(1 + \delta(x)\right) \left(1 + ax\right)^2 \]

- Transition Form Factor (TFF) to parameterise low energy QCD in \(\pi^0 \)

- TFF Theoretical models used in the hadronic light-by-light scattering contribution to \((g - 2)_\mu\)

- Missing precise direct measurement of the TFF to test theoretical models
Selection

- Full kinematic reconstruction of $K^\pm \rightarrow \pi^\pm \pi_D^0$ events

- 3 track topology (π^\pm, e^+, e^-)
- 1 Photon in the LKr Calorimeter
- $x > 0.01$
Selection

- Full kinematic reconstruction of $K^\pm \to \pi^\pm \pi_D^0$ events

- 1.06 M of $\pi^0 \to \gamma e^+e^-$ candidates selected

- TFF obtained by fitting the simulation to the data x spectrum
Preliminary Results

Theoretical Expectation

\[a = (2.90 \pm 0.50) \times 10^{-2}, \chi^2_{PT}, [K. Kampf et al. EPJ C46 (2006), 191]\]
\[a = (3.07 \pm 0.06) \times 10^{-2}, \text{dispersion theory}, [M. Hoferichter et al. EPJ C74 (2014), 3180]\]
\[a = (2.92 \pm 0.04) \times 10^{-2}, \text{two hadron saturation}, [T. Husek et al. EPJ C75 (2015), 586]\]
The NA62 Experiment

Goal

• Measure $\text{BR}(K^+ \rightarrow \pi^+ \nu \bar{\nu})$ with 10% precision

Requirement

• Collect around 100 events in the next 2 years (statistics)
 ➡ 10^{13} K^+ decays in 2 years with 10% acceptance
• Better than 10% precision on background measurement (systematics)
 ➡ 10^{12} background rejection (<20% background)

Data

• Runs in 2014 and 2015
• Next Physics run starts end of April
$\text{BR}(K^+ \rightarrow \pi^+ \nu \bar{\nu})$: Theoretical Motivation

- FCNC loop process, highly suppressed, theoretically very clean

- Well calculated inside the SM [A.J. Buras et al., JHEP 1511 (2015) 033]

\[BR_{SM} (K^+ \rightarrow \pi^+ \nu \bar{\nu}) = (9.11 \pm 0.72) \times 10^{-11} \]

- Previous Measurement (only 7 events) [BNL E787/E949: PRL101 (2008) 191802]

\[BR_{exp} (K^+ \rightarrow \pi^+ \nu \bar{\nu}) = (17.3^{+11.5}_{-10.5}) \times 10^{-11} \]

Any deviation from the expected value is a hint of new physics
NA62 Detector

SPS Protons
- 400 GeV
- 10^{12} protons/s
- 3.5 s spill

Secondary Beam
- 75 GeV, $\Delta p/p \sim 1\%$
- K (6%), p (23%), π (70%)
- 750 MHz

Kaon Decays
- ~ 5 MHz
- 4.5×10^{12} per year
- 10^{-6} mbar vacuum

Beryllium Target

Fiducial Region 65m

Total Length 270m

Hadron Beam 750 MHz

Cedar

Kaon and Tracking

Secondary Beam

Kaon ID and Tracking

Photons and Muons Veto

Pion ID and Tracking

Secondary Beam

Kaon ID and Tracking

Kaon ID and Tracking

Photons and Muons Veto

Pion ID and Tracking

Total Length 270m
Analysis Strategy

Signal:
✓ one beam K^+
✓ one π^+
✓ nothing else

Background:
× Beam activity
× other K^+ decays

- Precise **kinematic** reconstruction
 ➞ 2 signal regions
- PID for kaons and pions
 ➞ $15 < P_{\pi} < 35$ GeV/c
- Hermetic **photon** detection
 ➞ 65 m long fiducial region
Analysis Strategy

Signal:
✓ one beam K^+
✓ one π^+
✓ nothing else

Background:
x Beam activity
x other K^+ decays

$M_{\text{miss}} = (P_{K^+} - P_{\pi^+})^2$

Expected 45 SM events per year with less than 10 background

- Precise kinematic reconstruction
 ➡ 2 signal regions
- PID for kaons and pions
 ➡ $15 < P_{\pi} < 35$ GeV/c
- Hermetic photon detection
 ➡ 65 m long fiducial region
Signal Topology and Kaon ID

One Track Selection (OTS)
- One downstream track topology
- Beam track matching
- Kaon tag in CEDAR (Kaon ID)
- Energy in the calorimeters
✓ Information from RICH and Calorimeters

✓ Need $O(10^7)$ μ suppression, mainly for $K^+ \rightarrow \mu^+ \nu$

✓ 80% pion efficiency in RICH with $O(10^2) \pi/\mu$ separation

✓ Simple cut analysis on calorimeters provide $(10^4 \div 10^6) \mu$ suppression, with (90% ÷ 40%) π efficiency

⇒ Room for improvement
Exploiting correlation between photons from the same \(\pi^0 \)

Need \(O(10^8) \) rejection of \(\pi^0 \), mainly for \(K^+ \rightarrow \pi^+\pi^0 \) suppression

2015 Measurement statistically limited
Other Physics Program

- Compelling Physics program at NA62

<table>
<thead>
<tr>
<th>Decay</th>
<th>Physics</th>
<th>Present limit (90% C.L.) / Result</th>
<th>NA62</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\pi^+\mu^+e^-$</td>
<td>LFV</td>
<td>1.3×10^{-11}</td>
<td>0.7×10^{-12}</td>
</tr>
<tr>
<td>$\pi^+\mu^-e^+$</td>
<td>LFV</td>
<td>5.2×10^{-10}</td>
<td>0.7×10^{-12}</td>
</tr>
<tr>
<td>$\pi^-\mu^+e^+$</td>
<td>LNV</td>
<td>5.0×10^{-10}</td>
<td>0.7×10^{-12}</td>
</tr>
<tr>
<td>$\pi^-\mu^-e^+$</td>
<td>LNV</td>
<td>6.4×10^{-10}</td>
<td>2×10^{-12}</td>
</tr>
<tr>
<td>$\pi^-\mu^+\mu^+$</td>
<td>LNV</td>
<td>1.1×10^{-9}</td>
<td>0.4×10^{-12}</td>
</tr>
<tr>
<td>$\mu^-\nu^+e^+$</td>
<td>LNV/LFV</td>
<td>2.0×10^{-8}</td>
<td>4×10^{-12}</td>
</tr>
<tr>
<td>$e^-\nu\mu^+\mu^+$</td>
<td>LNV</td>
<td>No data</td>
<td>10^{-12}</td>
</tr>
<tr>
<td>π^+X^0</td>
<td>New Particle</td>
<td>5.9×10^{-11}</td>
<td>10^{-12}</td>
</tr>
<tr>
<td>$\pi^+\chi\chi$</td>
<td>New Particle</td>
<td>$-$</td>
<td>10^{-12}</td>
</tr>
<tr>
<td>$\pi^+\pi^+e^-\nu$</td>
<td>$\Delta S \neq \Delta Q$</td>
<td>1.2×10^{-8}</td>
<td>10^{-11}</td>
</tr>
<tr>
<td>$\pi^+\pi^+\mu^-\nu$</td>
<td>$\Delta S \neq \Delta Q$</td>
<td>3.0×10^{-6}</td>
<td>10^{-11}</td>
</tr>
<tr>
<td>$\pi^+\gamma$</td>
<td>Angular Mom.</td>
<td>2.3×10^{-9}</td>
<td>10^{-12}</td>
</tr>
<tr>
<td>$\mu^+\nu_h,\nu_h \rightarrow \nu\gamma$</td>
<td>Heavy neutrino</td>
<td>Limits up to $m_{\nu_h} = 350$ MeV</td>
<td>$>>2$ better</td>
</tr>
<tr>
<td>R_K</td>
<td>LU</td>
<td>$(2.488 \pm 0.010) \times 10^{-5}$</td>
<td>$>>2$ better</td>
</tr>
<tr>
<td>$\pi^+\gamma\gamma$</td>
<td>χPT</td>
<td>< 500 events</td>
<td>10^5 events</td>
</tr>
<tr>
<td>$\pi^0\pi^0e^+\nu$</td>
<td>χPT</td>
<td>66000 events</td>
<td>$O(10^6)$</td>
</tr>
<tr>
<td>$\pi^0\pi^0\mu^+\nu$</td>
<td>χPT</td>
<td>$-$</td>
<td>$O(10^5)$</td>
</tr>
</tbody>
</table>
Other Physics Program

- Compelling Physics program at NA62

- Search for heavy neutrinos in $K^+ \rightarrow e^+ \nu_h$ and $K^+ \rightarrow \mu^+ \nu_h$ decays

- Sensitive for mass region $100 - 380$ MeV/c2

- Background in the mass search region ~ 5 order of magnitude below the $K^+ \rightarrow l^+ \nu_{SM}$ peak
Conclusion

• Preliminary world best measurement of π^0 Transition Form Factor (TFF) slope performed using NA62 2007 data

\[a = (3.70 \pm 0.53_{stat} \pm 0.36_{syst}) \times 10^{-2} \]

• Commissioning of the NA62 experiment for $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ is over

• Preliminary study of the data at low intensity:
 • Physics sensitivity for the $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ measurement is close to the design
 • Analysis of higher intensity data is on going
 • A further interesting physics program is going to be addressed

• Data taking will resume on the April 25th with around 200 days of run in 2016
Backup Slides
<table>
<thead>
<tr>
<th>Year Range</th>
<th>Collaboration</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'86 - '89</td>
<td>NA31</td>
<td>Hint of direct CP violation in Neutral Kaon decays</td>
</tr>
<tr>
<td>'97 - '01</td>
<td>NA48</td>
<td>ϵ'/ϵ: Proof of direct CP violation</td>
</tr>
<tr>
<td>'02</td>
<td>NA48/1</td>
<td>K_s rare decays</td>
</tr>
<tr>
<td>'03 - '04</td>
<td>NA48/2</td>
<td>CP violation in Charge Kaons decays</td>
</tr>
<tr>
<td>'07 - '08</td>
<td>NA62 (NA48/3)</td>
<td>Lepton Universality (R_k)</td>
</tr>
<tr>
<td>'14 - '18</td>
<td>NA62</td>
<td>$K^+ \rightarrow \pi^+\nu\bar{\nu}$ decay</td>
</tr>
</tbody>
</table>
NA62 2007 Data Taking

Simultaneous K^{\pm} beams

74 ± 2 GeV/c
NA62 Detector

Kaon Tagging - CEDAR
45 MHz rate
time: 100 ps

Kaon Tracking - GTK
time: \(\approx 200\) ps
momentum: \(dp/p < 0.4\%\)
direction : \(\approx 0.016\) mrad

Guard Ring - CHANTI
To detect beam interaction within the last GTK station
NA62 Detector

Pion Tracking - STRAW
momentum: dp/p < 0.33%
direction: ≈10 mrad
extracted vertex: ≈1mm

Pion ID - RICH
π/μ separation: 10^2
time: <100 ps

Pion Timing - CHOD
time: <300ps
Charged Trigger
NA62 Detector

Photon Veto
Hermetic coverage
Large Angle: LAV
Intermediate Angle: LKr
Small Angle: IRC, SAC

Muon veto
Muon rejection 10^5
Calorimeters: LKr, HAC
Trigger for hadronic showers
Fast Veto: MUV
Status of the Experiment

• Commissioning runs in 2014 and 2015

• Beam commissioned up to nominal intensity

• Beam Detectors:
 • Cedar (K ID) and CHANTI (guard ring) fully commissioned
 • GTK (tracker) partially commissioned (full detector in 2016)

• Downstream detectors:
 • Fully commissioned

• Trigger:
 • L0 fully commissioned
 • L1, L2 partially commissioned

• Analysis:
 • Low intensity data taken with minimum bias trigger for detector performance studies
 • Up to full intensity data taken with calorimetric trigger, work on going
2015 Data Quality: Kinematics

✓ Combine information from GTK and STRAW trackers

✓ Need $O(10^4 \div 10^5)$ suppression for main kaon decay modes

✓ Kinematics studied with $K^+ \rightarrow \pi^+\pi^0$ sample selected using the LKr calorimeter

✓ Resolutions close to design

✓ $O(10^3)$ kinematic suppression factor in 2015
2015 Data Quality: Kinematics

✓ Combine information from GTK and STRAW trackers

✓ Need $O(10^4 \div 10^5)$ suppression for main kaon decay modes

✓ Kinematics studied with $K^+ \rightarrow \pi^+\pi^0$ sample selected using the LKr calorimeter

✓ Resolutions close to design

✓ Best $K^+ \rightarrow \mu^+\nu$ suppression for $P_{\pi} < 35$ GeV/c

✓ $O(10^3)$ kinematic suppression factor in 2015