The Kaon identification system of the NA62 CERN experiment

Émilie Maurice, University of Liverpool
On behalf of the NA62 Collaboration

NA62 CERN EXPERIMENT

Unseparated hadron beam: \(K^+ / \pi^+ (6/34/60\%) \)

Beam energy: \(75 \text{ (±1\%) GeV/c} \)

- **Fly**
- **Veto**

Hadron Beam 800 MHz

KTAG

- **K**
- **AON**
- **CERN EXPERIMENT**
- **NA62**

Set up to detect Cherenkov light

- **Ring imaging optics**
- **Existing Beam CEDAR W counter**
- **Set up to detect Cherenkov light from \(K^+ \)**

2012 - 2014

- **Detector installation – Technical run in 2012**
- **Pilot run**
- **Physics Run**

2015 - 2018

- **Total Length 270m**

Kaon Identification System : KTAG

Suppression of the accidental non-kaon background
Definition of offline timestamp for all subdetectors

NA62 challenges

- Identification of \(K^+ \) with \(\geq 95\% \) efficiency
- Time resolution < 100 ps
- Particle misidentification < \(10^{-4} \)
- Huge illumination: \(45 \text{ MHz } K^+ \), with \(\sim 200 \gamma/K \)

Existing Beam CEDAR W counter

- Ring imaging optics
- Set up to detect Cherenkov light from \(K^+ \)

KTAG : CEDAR + new photon detectors and read-out system

Cherenkov light detected in 8 Light boxes

- 1 Light box contains: 32 R9880 Hamamatsu PMTs
- 16 R7400 Hamamatsu PMTs
- Fast readout electronics

Light box is in an insulated cooled Faraday enclosure flushed with \(\text{N}_2 \)

\(N_2 \) pressure : 1.74 bar for \(K^+ \)

KTAG Efficiency vs N-fold (sector) coincidence

- **Preliminary**
- \(\approx 280 \text{ ps} \) (NS) \(\approx 20 \text{ detected } \gamma/K \)
- \(\approx 70 \text{ ps} \)

Kaon Physics : \(K^+ \rightarrow \pi^+ \nu \bar{\nu} \)

NA62 main goal : \(K^+ \rightarrow \pi^+ \nu \bar{\nu} \)

- FCNC process forbidden at tree-level
- Constraint on CKM matrix element \(V_{ud} \)
- Theoretically clean prediction

\(BR_{\text{NA62}} = (9.11 \pm 0.72) \times 10^{-11} \)

- Previous measurement from 7 events

KTAG : Fully commissioned

- **KTAG** is essential to NA62 physics
- **Single track study with KTAG**

Towards the measurement of \(BR(K^+ \rightarrow \pi^+ \nu \bar{\nu}) \)

Preliminary analysis: \(M^2_{\text{max}} = \left(\frac{P^+}{K} - P_{\pi^+} \right)^2 \)

- \(K^+ \) timing (KTAG), nominal momentum and direction (no GTK)
- \(\pi^+ \) momentum in \([15; 35] \text{ GeV/c} \) (STRAW tracker using only Pt kick)
- Decay vertex in fiducial region

Resolution improvement expected from :

- GTK kaon spectrometer information
- Fine STRAW spectrometer alignment with detailed B field map

Background rejection improvements from :

- RICH particle identification (\(\tau/\mu/e \))
- Photon rejection (LKr, LAV, IRC, SAC)
- Muon rejection (MUV)

Conclusions and Perspectives

- **KTAG** is essential to NA62 physics
- **NA62 aims to measure \(BR(K^+ \rightarrow \pi^+ \nu \bar{\nu}) \) with 10% accuracy**
- \(100 \text{ K}^+ \rightarrow \pi^+ \nu \bar{\nu} \) with \(S/B = 10 \) to be achieved in 2 – 3 years

EPS-HEP 2015, Vienna, Austria, 22 – 29 July 2015