Recent results from NA48/2 (LFV, DP) and NA62 (Neutral Pion Form Factor)

On behalf of the NA62 collaboration

Nicolas Lurkin
School of Physics and Astronomy, University of Birmingham
XIIIth International Conference on Heavy Quarks and Leptons, 24-05-2016
NA48/2 - NA62_{R_K} experiment

Lepton Number Violating (LNV) decay $K^\pm \rightarrow \pi^\mp \mu^\pm \mu^\pm$

Search for resonances in $K^\pm \rightarrow \pi^\mp \mu^\pm \mu^\pm$ and $K^\pm \rightarrow \pi^\pm \mu^+ \mu^-$

Dark Photon (DP) searches in π^0 decay

π^0 electromagnetic transition form factor (TFF) measurement
CERN NA48/NA62 experiments

Jura mountains

Geneva airport

SPS

LHC

Experiments history

<table>
<thead>
<tr>
<th>Earlier</th>
<th>Experiment</th>
<th>Year(s)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NA31</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NA48</td>
<td>((K_S/K_L))</td>
<td>1997</td>
<td>(Re(\varepsilon'/\varepsilon)) Discovery of direct CPV</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2001</td>
<td></td>
</tr>
<tr>
<td>NA48/1</td>
<td>((K_S/)hyperons))</td>
<td>2002</td>
<td>Rare (K_S) and hyperon decays</td>
</tr>
<tr>
<td>NA48/2</td>
<td>((K^+/K^-))</td>
<td>2003-2004</td>
<td>Direct CPV, Rare (K^+/K^-) decays</td>
</tr>
<tr>
<td>NA62_{R_K}</td>
<td>((K^+/K^-))</td>
<td>2007-2008</td>
<td>(R_K = K^\pm/e^-_2/K^\pm/\mu^-_2)</td>
</tr>
<tr>
<td>NA62</td>
<td>((K^+))</td>
<td>2014</td>
<td>(K^+ \rightarrow \pi^+\nu\bar{\nu}), Rare (K^+) and (\pi^0) decays</td>
</tr>
</tbody>
</table>

Kaon decay in flight experiment

NA62: currently \(~200\) participants, \(29\) institutions from \(13\) countries
Experimental Setup (NA48/2 – NA62\(_{Rk} \))

- **Principal subdetectors**
 - Scintillator hodoscope (HOD)
 - Low-level trigger, time measurement (150 ps)
 - Magnetic spectrometer (4DHCs)
 - 4 views/DCH high efficiency
 - \(\sigma_p/p = 1.02\% \oplus 0.044\% \cdot p \) [GeV/c] NA48/2
 \[= 0.48\% \oplus 0.009\% \cdot p \] [GeV/c] NA62\(_{Rk} \)
 - Liquid Krypton EM calorimeter (LKr)
 - High granularity, quasi-homogeneous
 - \(\sigma_E/E = (3.2/\sqrt{E} \oplus 9/E \oplus 0.42)\% \) [E in GeV]
 - \(\sigma_x = \sigma_y = (4.2/\sqrt{E} \oplus 0.6) \) mm [E in GeV]
 \[(1.5 \text{ mm @ 10 GeV}) \]

NA48/2
- \(P_K = 60 \pm 3 \) GeV/c
- 3-track vertex trigger
- Simultaneous \(K^+ / K^- \) beam

NA62\(_{Rk} \)
- \(P_K = 74 \pm 2 \) GeV/c
- \(K_{e2} \) trigger
- Alternate \(K^+ / K^- \) beam
LNV in the $K^\pm \to \pi \mu \mu$ decays

- **Majorana Neutrinos**
 - Asaka-Shaposhnikov model (νMSM) [PLB 620 (2005) 17]:
 three sterile neutrinos N_i in the SM to explain Dark Matter (N_1, O(keV))
 + Baryon Asymmetry and low ν mass ($N_{2,3}$, O(100 MeV – few GeV))
 - Effective vertices with W^\pm, Z and SM leptons with U mixing matrix
 - Production of $N_{2,3}$ in K^\pm decays and $N_{2,3}$ decay for $m_{2,3} < m_K - m_\mu$
 $$K^\pm \to \mu^\pm N, \quad N \to \pi^\pm \mu^\mp$$
 - $\text{BR}(K^\pm \to \mu^\pm N) \times \text{BR}(N \to \pi^\mp \mu^\pm) \sim |U_{\mu 4}|^4$

- **Inflatons**
 - Shaposhnikov-Tkachev model [PLB 639 (2006) 414]:
 νMSM + real scalar field (inflaton χ) with scale-invariant couplings to explain
 universe homogeneity and isotropy on large scales/structures on smaller scales
 - χ-Higgs mixing (θ), χ-Higgs coupling \to universe reheating, $\tau_\chi \sim (10^{-8} - 10^{-12})$
 - Production in Kaon decays:
 $$m_\chi < 354 \text{ MeV}/c^2 \text{ and } \text{BR}(K^\pm \to \pi^\pm \chi) = 1.3 \times 10^{-3} \left(\frac{2|\vec{p}_\chi|}{M_K}\right) \theta^2$$

Nicolas Lurkin, HQL2016, 24-05-2016
Blind analysis:

- Selection based on simulation of $K^{\pm} \to \pi^{\mp}\mu^{\pm}\mu^{\pm}$ and $K^{\pm} \to \pi^{\pm}\pi^{+}\pi^{-}$ (background, similar topology)
- 3-track vertex topology, 2 same-sign muons, 1 odd-sign pion, no missing momentum
- First-order cancellation of systematic effects
- Control region: $M_{\pi\mu\mu} < 480$ MeV/c^2
- Signal region: $|M_{\pi\mu\mu} - M_K| < 5$ MeV/c^2

Results:

- Event in Signal Region: $N_{obs} = 1$
- Expected background from MC:

 $N_{exp} = 1.163 \pm 0.867_{stat} \pm 0.021_{ext} \pm 0.116_{syst}$
- From Rolke-Lopez statistical method:

 $BR(K^{\pm} \to \pi^{\mp}\mu^{\pm}\mu^{\pm}) < 8.6 \times 10^{-11}$ @ 90% CL

Nicolas Lurkin, HQL2016,24-05-2016
LNC: Opposite-Sign Muon Sample

Selection
- Similar to same-sign
 - 3-track vertex, 2 opposite-sign muons, 1 pion, no missing momentum
 - First-order cancellation of systematic effects
 - Signal region: $|M_{\pi\mu\mu} - M_K| < 8 \text{ MeV}/c^2$

Results
- Event in Signal Region: 3489 $K^\pm \rightarrow \pi^\pm \mu^+ \mu^-$ candidates
- Background: $(0.36 \pm 0.10)\%$
- Search for resonances in $M_{\pi\mu}$ and $M_{\mu\mu}$ invariant masses
 - step=$0.5\sigma(M_{res})$ and window=$\pm2\sigma(M_{res})$
 - Limit using Rolke-Lopez from N_{obs} and N_{exp} for each hypothesis
LNV and LNC: Resonances searches

- Search for $K^\pm \rightarrow \mu^\pm N_4 (N_4 \rightarrow \pi^\mp \mu^\pm)$ decays, 284 mass hypotheses
 - 2 possibilities for $M(\pi^\mp \mu^\pm)$, closest to M_{res} chosen
 - Never exceeds $+3\sigma$: no signal observed and UL(BR)$\sim 10^{-10}$ for $\tau < 100$ ps

- Upper limit on $\text{BR}(K^\pm \rightarrow \mu^\pm N_4)\text{BR}(N_4 \rightarrow \pi^\mp \mu^\pm)$
 - $UL(BR) = \frac{UL(N_{sig})}{N_{K*Acceptance}}$

- Statistical significance
 - $z = \frac{(N_{obs} - N_{exp})}{\sigma(N_{obs}) \oplus \sigma(N_{exp})}$

Nicolas Lurkin, HQL2016, 24-05-2016
LNV and LNC: Resonances searches

- **Search for** $K^\pm \to \mu^\pm N_4 (N_4 \to \pi^\mp \mu^\pm)$ **decays**, 284 mass hypotheses
 - 2 possibilities for $M(\pi^\mp \mu^\pm)$, closest to M_{res} chosen
 - Never exceeds $+3\sigma$: no signal observed and UL(BR)$\sim 10^{-10}$ for $\tau < 100$ ps

- **Search for** $K^\pm \to \mu^\pm N_4 (N_4 \to \pi^\pm \mu^\mp)$ **decays**, 280 mass hypotheses
 - Never exceeds $+3\sigma$: no signal observed and UL(BR)$\sim 10^{-9}$ for $\tau < 100$ ps

- **Upper limit on**
 \[BR(K^+ \to \mu^+ N_4) BR(N_4 \to \pi^\mp \mu^\pm) \]

 \[UL(BR) = \frac{UL(N_{sig})}{N_K \times Acceptance} \]

- **Statistical significance**
 \[Z = \frac{(N_{obs} - N_{exp})}{\sigma(N_{obs}) \oplus \sigma(N_{exp})} \]

Nicolas Lurkin, HQL2016, 24-05-2016
LNV and LNC: Resonance searches

- **Search for** \(K^\pm \rightarrow \mu^\pm N_4 (N_4 \rightarrow \pi^\mp \mu^\mp) \)** decays, **284 mass hypotheses**
 - 2 possibilities for \(M(\pi^\mp \mu^\mp) \), closest to \(M_{\text{res}} \) chosen
 - Never exceeds +3\(\sigma \): no signal observed and UL(BR)~\(10^{-10} \) for \(\tau < 100 \) ps

- **Search for** \(K^\pm \rightarrow \mu^\pm N_4 (N_4 \rightarrow \pi^\pm \mu^\mp) \)** decays, **280 mass hypotheses**
 - Never exceeds +3\(\sigma \): no signal observed and UL(BR)~\(10^{-9} \) for \(\tau < 100 \) ps

- **Search for** \(K^\pm \rightarrow \pi^\pm X (X \rightarrow \mu^+ \mu^-) \)** decays, **267 mass hypotheses**
 - Never exceeds +3\(\sigma \): no signal observed and UL(BR)~\(10^{-9} \) for \(\tau < 100 \) ps

- **Upper limit on**
 \[
 \text{BR}(K^\pm \rightarrow \mu^\pm N_4) \times \text{BR}(N_4 \rightarrow \pi^\mp \mu^\mp)
 \]
 \[
 \text{UL}(\text{BR}) = \frac{\text{UL}(N_{\text{sig}})}{N_{K\text{*Acceptance}}}
 \]

- **Statistical significance**
 \[
 z = \frac{(N_{\text{obs}} - N_{\text{exp}})}{\sqrt{\sigma(N_{\text{obs}}) + \sigma(N_{\text{exp}})}}
 \]

\[z \text{ vs. } M_{\text{res}}\]
Dark Photon Searches

- QED-like interactions with SM fermions
 $$\mathcal{L} \sim g' q_f \bar{\psi}_f \gamma^\mu \psi_f U'_\mu$$

- Coupling constants and charges generated through kinetic mixing between QED and the new U(1) gauge bosons
 $$\mathcal{L}_{mix} = -\frac{\epsilon}{2} F_{\mu\nu}^{QED} F_{\mu\nu}^{dark}$$

- Motivations:
 - Possible explanation for positron excess in cosmic rays (PAMELA, FERMI, AMS-02) by dark matter annihilation
 - Possible solution to the muon g-2 anomaly

Nicolas Lurkin, HQL2016, 24-05-2016
Production

Batell, Pospelov and Ritz, [PRD80 (2009) 095024]

- $\text{BR}(\pi^0 \to \gamma A') = 2\varepsilon^2 \left(1 - \frac{m_{A'}^2}{m_{\pi^0}^2}\right)^3 \text{BR}(\pi^0 \to \gamma\gamma)$
- Mixing parameter ε and dark photon mass $m_{A'}$
- Loss of sensitivity as $m_{A'}$ approaches the m_{π^0} threshold
- For $\varepsilon^2 > 10^{-7}$ and $m_{A'} > 10 \text{ MeV}/c^2$ mean free path is negligible and prompt decay is assumed
- Signature similar to π_D
 $\pi_D^0 \to \gamma e^+ e^-$; $\pi^0 \to \gamma A'$
 $\Downarrow e^+ e^-$

Decay

Batell, Pospelov and Ritz, [PRD79 (2009) 115008]

- Accessible in π^0 decay, assuming only into SM fermions
 $\Gamma_{A'} \approx \Gamma(A' \to e^+ e^-)$
 $\approx \alpha \varepsilon^2 m_{A'}/3$
- Hadronic decay contribution $m_{A'} > 2m_{\pi^0}$
- **NA48/2 data**: $\sim 2 \times 10^{11} K^\pm$ decays in the fiducial region
- **$\pi/\mu/e$ separation using E/p**
- **Selection for $K^\pm \rightarrow \pi^\pm \pi^0_D$**
 - Three-track vertex topology
 - $|m_{\pi\gamma e e} - m_K| < 20 \text{ MeV}/c^2$
 - $|m_{\gamma e e} - m_{\pi^0}| < 8 \text{ MeV}/c^2$
 - No missing momentum
- **Selection for $K^\pm \rightarrow \pi^0_D \mu^\pm \nu$**
 - $|m_{\gamma e e} - m_{\pi^0}| < 8 \text{ MeV}/c^2$
 - No missing mass

- **Sensitivity determined by irreducible π^0 Dalitz decay (1.2%)**
- **Acceptance for both signature depending on $m_{A'}$ up to 4.5%**
Scan for narrow peaks in e^+e^- invariant mass spectrum

- $\sigma_{m_{ee}} = 0.011 \times m_{ee}$
- Range: $9 \text{ MeV}/c^2 \leq m_{A'} < 120 \text{ MeV}/c^2$
- Variable DP mass step: $\approx 0.5\sigma(m_{A'})$
- Mass-window: $\pm 1.5\sigma(m_{A'})$
- Limits from N_{obs} and N_{exp} for each of the 404 $m_{A'}$ hypotheses

Local signal significance never exceeds 3σ:
- no DP signal is observed.
Improvement on the existing limits in the $m_{A'}$ range $9 - 70$ MeV/c^2

Most stringent limits are at low $m_{A'}$ (kinematic suppression is weak)

Sensitivity limited by the irreducible π^0_D background, ULs are 2-3 orders of magnitude above SES.

Upper limit on ε^2 scales as $\sim (1/NK)^{1/2}$: modest improvement with larger samples

If DP couples to quarks and decays mainly to SM fermions, it is ruled out as the explanation for the anomalous $(g - 2)_\mu$
\(\pi^0 \) TFF: Dalitz Decay

\[\pi^0 \rightarrow e^+ e^- \gamma \]

- **Kinematic variables**

 \[x = \frac{(p_{e^+} + p_{e^-})^2}{m_{\pi^0}^2}, \quad y = \frac{2p_{\pi^0} \cdot (p_{e^+} - p_{e^-})}{m_{\pi^0}^2 (1-x)} \]

- **Differential decay width**

 \[\frac{1}{\Gamma(\pi^0_{2\gamma})} \frac{d^2\Gamma(\pi^0_D)}{dxdy} = \frac{\alpha}{4\pi} \frac{(1-x)^3}{x} \left(1 + y^2 + \frac{r^2}{x} \right) \left(1 + \delta(x, y) \right) |F(x)|^2 \]

- **Form factor varies slowly:**

 \[\text{Approximation } F(x) \approx 1 + ax \]

- **Slope measured from Dalitz decays from** \(K^\pm \rightarrow \pi^\pm \pi_D^0 \)

 \[\text{Expectation from VMD: } a \approx 0.03 \]

 \[\text{Enters hadronic light-by-blight scattering contribution to } (g - 2)_\mu \]

 A. Nyffeler [arXiv:1602.03398]

 \[\text{Model independent measurement: important test of the theory models} \]
Corrections from NLO differential width encoded in $\delta(x, y)$

Corrections of same magnitude as TFF

New generator with radiative correction and simulation of bremsstrahlung photon.
Select pure π_D^0 sample from
- 3-track vertex topology
- One photon candidate and max three well reconstructed tracks
- Identification by reconstructed kinematics
 - $115 \text{ MeV}/c^2 < M_{ee\gamma} < 145 \text{ MeV}/c^2$
 - $465 \text{ MeV}/c^2 < M_{\pi^+\pi^0} < 510 \text{ MeV}/c^2$
 - Dalitz variable $y < 1; \quad 0.01 < x < 1$
- Reconstructed Kaon compatible with beam properties and offline L2 and L3 trigger conditions

Build x Dalitz distribution for data and MC (equal population bins)

For each TFF slope value hypothesis, reweight simulated events ($a_{sim} = 0.032$)

$$w(a) = \frac{(1 + ax_{true})^2}{(1 + a_{sim}x_{true})^2}$$

Minimise $\chi^2(a)$ of Data/Simulation wrt. a
\(\pi^0 \) TFF: Preliminary Result

Data sample
- Kaon decays: \(\sim 2 \times 10^{10} \)
- Fully reconstructed \(\pi^0_D \) events in the signal region \((x > 0.01) \): \(1.05 \times 10^6 \)

Uncertainties

<table>
<thead>
<tr>
<th>Source</th>
<th>(\delta a \times 10^{-2})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statistical – Data</td>
<td>0.49</td>
</tr>
<tr>
<td>Statistical – MC</td>
<td>0.20</td>
</tr>
<tr>
<td>Beam momentum spectrum simulation</td>
<td>0.30</td>
</tr>
<tr>
<td>Spectrometer momentum scale</td>
<td>0.15</td>
</tr>
<tr>
<td>Spectrometer resolution</td>
<td>0.05</td>
</tr>
<tr>
<td>LKr non-linearity and energy scale</td>
<td>0.04</td>
</tr>
<tr>
<td>Particle mis-ID</td>
<td>0.08</td>
</tr>
<tr>
<td>Accidental background</td>
<td>0.08</td>
</tr>
<tr>
<td>Neglected (\pi^0_D) sources in MC</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Fit result illustration
- Data / MC(a=0) ratio
- 20 equal population bins
- Points in bin barycenters

\[
a = (3.70 \pm 0.53_{\text{stat}} \pm 0.36_{\text{syst}}) \times 10^{-2}
\]

\[
= (3.70 \pm 0.64) \times 10^{-2}
\]

\(\chi^2/\text{n.d.f.}: 52.5/49, \) p-value: 0.34
Theory expectations

- K. Kampf et al., EPJ C46 (2006), 191. Chiral perturbation theory:
 \[a = (2.90 \pm 0.50) \times 10^{-2} \]

- M. Hoferichter et al., EPJ C74 (2014), 3180. Dispersion theory:
 \[a = (3.07 \pm 0.06) \times 10^{-2} \]

- T. Husek et al., EPJ C75 (2015) 12, 586. Two-hadron saturation (THS) model:
 \[a = (2.92 \pm 0.04) \times 10^{-2} \]

CELLO measurement:

- H. J. Behrend et al., Z. Phys. C49 (1991), 401. Extrapolation of space-like momentum region data fit to VMD model:
 \[a = (3.26 \pm 0.26_{\text{stat}}) \times 10^{-2} \]
Summary

- **LNV decay @ NA48/2**
 - $BR(K^\pm \to \pi^\mp \mu^\mp \mu^\pm) < 8.6 \times 10^{-11}$ at 90% CL

- **Majorana Neutrinos and Inflaton @ NA48/2**
 - $K^\pm \to \mu^\pm N_4(N_4 \to \pi^\mp \mu^\pm)$: UL(BR) of the order of 10^{-10} for $\tau < 100$ ps
 - $K^\pm \to \mu^\pm N_4(N_4 \to \pi^\pm \mu^\mp)$: UL(BR) of the order of 10^{-9} for $\tau < 100$ ps
 - $K^\pm \to \pi^\pm \chi(\chi \to \mu^+ \mu^-)$: UL(BR) of the order of 10^{-9} for $\tau < 100$ ps

- **Dark Photon searches @ NA48/2**
 - Improved limits on DP mixing ϵ^2 in the mass range $9 - 70$ MeV/c^2
 - The whole region favoured by $(g - 2)_\mu$ is excluded

- **π_D^0 electromagnetic TFF slope @ NA62$_{RK}$**
 - $a = (3.70 \pm 0.53_{stat} \pm 0.36_{syst}) \times 10^{-2}$
 - Preliminary model independent result
 - ~1 million fully reconstructed π_D^0 decays
 - Improves TFF precision in the time-like momentum region

Nicolas Lurkin, HQL2016, 24-05-2016