Search for the dark photon at NA48 and NA62

Francesco Gonnella on behalf of the NA62 collaboration

26 September 2015

Phi Psi 2015 – USTC Hefei, AnHui - China
The simplest hidden sector model introduces an extra $U(1)$ gauge symmetry with its gauge boson: the dark photon (A').

QED-like interaction with SM fermions:

\[\mathcal{L} \sim g' q_f \bar{\psi}_f \gamma^\mu \psi_f U'_\mu \]

Coupling constant and charges can be generated through kinetic mixing between the QED and the new $U(1)$ gauge bosons

\[\mathcal{L}_{mix} = -\frac{\epsilon}{2} F_{\mu\nu}^{QED} F_{\mu\nu}^{dark} \]

Motivations:

1) Possible explanation for positron (but not antiproton) excess in cosmic rays (PAMELA, FERMI, AMS-02) by dark matter annihilation.

2) Possible solution for the muon $g-2$ anomaly.
Simultaneous coaxial narrow momentum band K± beams: P_K = 60 GeV/c, \(\delta P_K/P_K \approx 3\% \) (rms).

Rate of K± decays: \(\sim 100 \) kHz.

Data taking: six months in 2003-04.

Main trigger: 3-track vertex.

Principal sub-detectors:

- **Magnetic spectrometer (4 DCHs)**
 - 4 views/DCH: redundancy. Level2 trigger.
 - \(\delta p/p = (1.02 \pm 0.044p)\% \) [p in GeV/c]

- **Scintillator hodoscope (HOD)**
 - Level1 trigger, time measurement (150ps)

- **Liquid Krypton EM calorimeter (LKr)**
 - High granularity, quasi-homogeneous;
 - \(\sigma_E/E = (3.2/E^{1/2} \pm 9/E \pm 0.42)\% \) [E in GeV]
 - \(\sigma_x = \sigma_y = (4.2/E^{1/2} \pm 0.6)\text{mm} \) (1.5mm@10GeV)
Dark-photon decays into SM particles

Batell, Pospelov and Ritz, PRD80 (2009) 095024

\[\Gamma_{A'} \approx \Gamma(A' \rightarrow e^+ e^-) = \frac{1}{3} \alpha \varepsilon^2 m_{A'} \sqrt{1 - \frac{4m_e^2}{m_{A'}^2}} \left(1 + \frac{2m_e^2}{m_{A'}^2}\right) \approx \alpha \varepsilon^2 m_{A'}/3 \]
Dark-photon production in π^0 decays

Batell, Pospelov and Ritz, PRD80 (2009) 095024

$$\mathcal{B}(\pi^0 \rightarrow \gamma A') = 2\varepsilon^2 \left(1 - \frac{m_{A'}^2}{m_{\pi^0}^2}\right)^3 \mathcal{B}(\pi^0 \rightarrow \gamma \gamma)$$

- Two unknown parameters: mass ($m_{A'}$) and mixing (ε^2)
- Sensitivity to DP for $m_{A'} < m_{\pi^0}$
- Loss of sensitivity to ε^2 as $m_{A'}$ approaches m_{π^0} due to kinematical suppression of the $\pi^0 \rightarrow \gamma A'$ decay.
Dark-Photon lifetime and mean path

Dark-photon proper lifetime below the di-muon threshold:

\[c\tau_{A'} \approx 0.8 \, \mu m \times \left(\frac{10^{-6}}{\varepsilon^2} \right) \times \left(\frac{100 \, \text{MeV}}{m_{A'}} \right) \]

Mean free path at \(E_{A'}=50 \, \text{GeV} \) (maximum energy at NA48/2):

\[L_{\text{max}} \approx 0.4 \, \text{mm} \times \left(\frac{10^{-6}}{\varepsilon^2} \right) \times \left(\frac{100 \, \text{MeV}}{m_{A'}} \right)^2 \]

- For \(\varepsilon^2>10^{-7} \) and \(m_{A'}>10 \, \text{MeV}/c^2 \), DP path length is negligible with respect to the resolution on the vertex longitudinal coordinate (\(\sim 1 \, \text{m} \)).
- Therefore prompt DP-decay is assumed.
- DP production and decay signature \((\pi^0 \rightarrow \gamma A', A' \rightarrow e^+e^-) \) is identical to that of \(\pi^0 \rightarrow \gamma e^+e^- \) decay.

DP mean path vs \(m_{A'} \)

Assuming \(\varepsilon^2=10^{-6} \)

Mean path at \(E=20 \, \text{GeV} \)

Proper time
NA48/2 data sample

- **NA48/2 data:** \(\sim 2 \times 10^{11} \) \(K^\pm \) decays in the fiducial decay region
 - Production and decay in vacuum of \(\sim 5 \times 10^{10} \) tagged boosted \(\pi^0 \) mesons
 - Sources: \(K^\pm \rightarrow \pi^\pm \pi^0 \) decay (BR=20.7%) and \(K^\pm \rightarrow \pi^0 \mu^\pm \nu \) decay (BR=3.4%)
 - Mean free path of the \(\pi^0 \) is negligible (few \(\mu m \))
 - Efficient trigger chain for 3-track vertices throughout the data-taking based on HOD multiplicity (L1) and DCH track reconstruction (L2)

- **Search for the prompt** \(\pi^0 \rightarrow \gamma A', A' \rightarrow e^+ e^- \) decay chain
 - Identical signature to \(K^\pm \rightarrow \pi^\pm \pi^0_D \) and \(K^\pm \rightarrow \pi^0_D \mu^\pm \nu \) decays, three-track vertex topology.
 - Sensitivity determined by irreducible \(\pi^0_D \rightarrow \gamma e^+ e^- \) background (BR=1.2%)
 - Search for a **narrow peak** in \(e^+ e^- \) invariant mass spectrum
 - Excellent \(e^+ e^- \) mass resolution: \(\sigma_m \approx 0.011 \times m_{ee} \).

- **Acceptance for both** \(K^\pm \rightarrow \pi^\pm \pi^0 \) and \(K^\pm \rightarrow \pi^0 \mu^\pm \nu \) signal chains: depending on \(m_{A'} \), up to 4.5%
Two exclusive selections

\(K^{\pm} \rightarrow \pi^{\pm} \pi^0_D \) selection:
- \(|m_{\pi \gamma ee} - m_K| < 20 \text{ MeV}/c^2 \)
- \(|m_{\gamma ee} - m_{\pi^0}| < 8 \text{ MeV}/c^2 \)
- no missing momentum

\(K^{\pm} \rightarrow \pi^0_D \mu^{\pm} \nu \) selection:
- \(m_{\text{miss}}^2 = (P_K - P_{\mu} - P_{\pi^0})^2 \) compatible with zero
- \(|m_{\gamma ee} - m_{\pi^0}| < 8 \text{ MeV}/c^2 \)
- no missing total and transverse momentum

Reconstructed

\(\pi^0_D \) decay candidates:
- \(N(K_{2\pi D}) = 1.38 \times 10^7 \)
- \(N(K_{\mu 3D}) = 0.31 \times 10^7 \)
- total = \(1.69 \times 10^7 \)

\(K^{\pm} \) decays in fiducial region:
\(N_K = (1.57 \pm 0.05) \times 10^{11} \)
Dark-photon signal is a narrow peak in the m_{ee} distribution of π^0_D decays

- **DP mass scan performed:**
 - range: 9 MeV/c² ≤ m_Δ' < 120 MeV/c²
 - variable DP mass step: $\approx 0.5\sigma_m$
 - signal mass-window optimised to maximise expected sensitivity: $\pm 1.5\sigma_m$
 - DP-mass hypotheses tested: 404

- For each m_Δ', frequentist confidence intervals are obtained from numbers of observed and expected events (N_{obs}, N_{exp}) and their uncertainties.

- Local signal significance never exceeds 3σ: **no DP signal is observed**.
Acceptances of the DP selection for $K^\pm \to \pi^\pm \pi^0$, $K^\pm \to \pi^0 \mu^\pm \nu$ and $K^\pm \to \pi^\pm \pi^0 \pi^0$ decays followed by the prompt $\pi^0 \to \gamma A'$, $A' \to e^+ e^-$ decay chain.

Weak $m_{A'}$ dependence: cancellation of $m_{A'}$ dependencies of background fluctuation and acceptance.
 Improvement on the existing limits in the $m_{A'}$ range 9-70 MeV/c2.

Most stringent limits are at low $m_{A'}$ (kinematic suppression is weak).

Sensitivity limited by the irreducible π^0_D background, ULs are 2-3 orders of magnitude above SES.

Upper limit on ε^2 scales as $\sim (1/N_K)^{1/2}$: modest improvement with larger samples.

If DP couples to quarks and decays mainly to SM fermions, it is ruled out as the explanation for the anomalous $(g-2)_{\mu}$.
The NA62 experiment
Ultra rare kaon-decays

\(K^+ \to \pi^+ \nu \bar{\nu} \): theoretically pure and almost experimentally unexplored

<table>
<thead>
<tr>
<th>Decay</th>
<th>Branching Ratio (\times 10^{11})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(K^+ \to \pi^+ \nu \bar{\nu})</td>
<td>Theory (SM)</td>
</tr>
<tr>
<td>(K^0 \to \pi^0 \nu \bar{\nu})</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Theory (SM)</th>
<th>Experiment</th>
</tr>
</thead>
<tbody>
<tr>
<td>(K^+ \to \pi^+ \nu \bar{\nu})</td>
<td>9.11 (\pm 0.72) [1]</td>
<td>17.3 (+11.5 -10.5) [2]</td>
</tr>
<tr>
<td>(K^0 \to \pi^0 \nu \bar{\nu})</td>
<td>3.00 (\pm 0.30) [1]</td>
<td>(<2600 (90% CL)) [3]</td>
</tr>
</tbody>
</table>

NA62 goal is to measure this BR to 10% precision

in addition: \(|V_{td}| \) to \(\leq 10\% \) accuracy

These processes are very sensitive probes for new physics:

- They are highly suppressed
- They are predicted with very high accuracy

In-flight kaon decay at 75 GeV/c

- Large missing momentum

Kinematic Signature

- \(P_k = 75 \text{ GeV} \), \(\pi^+ \)
- \(P_k = 75 \text{ GeV}/c \)
- \(\gamma \gamma \) High Energy

Cuts on the missing mass

\[
m^2_{\text{miss}} = (P_k - P_\pi)^2
\]

defines 2 regions where the signal is not dominated by background

- Neutrinos carry \(\geq 40 \text{ GeV}/c \) momentum
- Require: \(P_\pi = 15 - 35 \text{ GeV}/c \)

Rejects \(\approx 92\% \) of Kaon decays
NA62 detector layout and principles

- High-performance EM calorimeter
- High-rate, precision tracking
- Redundant particle ID e/μ/π
- Hermetic photon vetoes

KTAG
- Differential Cerenkov for K⁺ ID in beam
- Beam tracking Si pixels, 3 stations

CHANTI
- Charged veto

GIGATRACKER

LAV
- Large-angle photon vetoes
- OPAL lead glass

RICH
- RICH μ/π ID
- 1 atm Ne

MUV
- μ veto
- Fe/scint

Dipole spectrometer
- 4 straw-tracker stations

Fiducial volume ~60m
- 10⁻⁶ mbar

5 MHz K⁺ decays

γ veto

IRC

γ veto

SAC

Forward γ veto

GIGA

High-performance EM calorimeter

High-rate, precision tracking

Redundant particle ID e/μ/π

Hermetic photon vetoes
NA62 prospects for the $K^{\pm} \rightarrow \pi^{\pm} A'$ decay

Comparison of $(K^{\pm} \rightarrow \pi^{\pm} A', A' \rightarrow e^+e^-, m_{A'} > m_{\pi^0})$ vs $(\pi^0 \rightarrow \gamma A', A' \rightarrow e^+e^-, m_{A'} < m_{\pi^0})$:

- Lower irreducible background: $\text{BR}(K^{\pm} \rightarrow \pi^{\pm} e^+e^-) \sim 10^{-7}$ vs $\text{BR}(\pi^0_D) \sim 10^{-2}$.
- Higher acceptance ($\times 4$), favourable K/π^0 flux ratio ($\times 4$).
- Therefore the expected BR limits: $\text{BR}(K^{\pm} \rightarrow \pi^{\pm} A') \sim 10^{-9}$ vs $\text{BR}(\pi^0 \rightarrow \gamma A') \sim 10^{-6}$.
- However $\text{BR}(K^{\pm} \rightarrow \pi^{\pm} A')/\text{BR}(\pi^0 \rightarrow \gamma A') \sim 10^{-4}$, expected ε^2 limits are $\varepsilon^2 \sim 10^{-5}$.

Dark photon emission BRs/\varepsilon^2

\[\pi^0 \rightarrow \gamma A' (\times 10^{-4}) \]

Davoudiasl, Lee, Marciano

PRD89 (2014) 095006

Expected ULs for BR and ε^2

Complementary $m_{A'}$ interval to π^0 decays ...

$\text{BR}(K^+ \rightarrow \pi^+ A') \times 10^4$

$\sim 10^{-9}$

$\varepsilon^2 \sim 10^{-5}$

... but not competitive to existing limits
Further NA62 K-physics programme

<table>
<thead>
<tr>
<th>K^+ decay</th>
<th>Physics</th>
<th>Present limit (90% C.L.) / Result</th>
<th>NA62</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\pi^+\mu^+e^-$</td>
<td>LFV</td>
<td>1.3×10^{-11}</td>
<td>0.7×10^{-12}</td>
</tr>
<tr>
<td>$\pi^+\mu^-e^+$</td>
<td>LFV</td>
<td>5.2×10^{-10}</td>
<td>0.7×10^{-12}</td>
</tr>
<tr>
<td>$\pi^-\mu^+e^+$</td>
<td>LNV</td>
<td>5.0×10^{-10}</td>
<td>0.7×10^{-12}</td>
</tr>
<tr>
<td>$\pi^-e^+e^+$</td>
<td>LNV</td>
<td>6.4×10^{-10}</td>
<td>2×10^{-12}</td>
</tr>
<tr>
<td>$\pi^-\mu^+\mu^+$</td>
<td>LNV</td>
<td>1.1×10^{-9}</td>
<td>0.4×10^{-12}</td>
</tr>
<tr>
<td>$\mu^-\nu e^+e^+$</td>
<td>LNV/LFV</td>
<td>2.0×10^{-8}</td>
<td>4×10^{-12}</td>
</tr>
<tr>
<td>$e^-\nu\mu^+\mu^+$</td>
<td>LNV</td>
<td>No data</td>
<td>10^{-12}</td>
</tr>
</tbody>
</table>

π^+X^0	New Particle	5.9×10^{-11} m$_{X^0} = 0$	10^{-12}
$\pi^+\chi\chi$	New Particle	–	10^{-12}
$\pi^+\pi^+e^-\nu$	$\Delta S \neq \Delta Q$	1.2×10^{-8}	10^{-11}
$\pi^+\pi^+\mu^-\nu$	$\Delta S \neq \Delta Q$	3.0×10^{-6}	10^{-11}
$\pi^+\gamma$	Angular Mom.	2.3×10^{-9}	10^{-12}
$\mu^+\nu_h, \nu_h \rightarrow \nu \gamma$	Heavy neutrino	Limits up to m$_{\nu_h} = 350$ MeV	

- R_K | LU | $(2.488 \pm 0.010) \times 10^{-5}$ | $\gg 2$ better |
- $\pi^+\gamma\gamma$ | χPT | < 500 events | 10^5 events |
- $\pi^0\pi^0e^+\nu$ | χPT | 66000 events | O(106) |
- $\pi^0\pi^0\mu^+\nu$ | χPT | – | O(105) |
Outlook and conclusion

- New NA48/2 result on dark photon search in π^0 decays: *Phys.Lett. B746 (2015) 178*
 - Integrated kaon flux analysed: 1.7×10^{11} decays in flight.
 - Assumption: DP decays into SM fermions only.
 - Improved limits on DP mixing ε^2 in the 9-70 MeV/c^2 mass range.
 - The strongest limits ($\varepsilon^2 \sim 2 \times 10^{-7}$) are at ~ 10 MeV/c^2 mass.
 - The whole region favoured by $(g-2)_\mu$ is excluded now.
 - Background-limited measurement: hard to improve below $\varepsilon^2 = 10^{-7}$.
 - Search via $K^\pm \rightarrow \pi^\pm A'$ ($m_{\pi^0} < m_{A'} < m_K - m_\pi$) is not competitive.

- Possible further directions in NA62 presently in data-taking:
 - Larger π^0 decay sample from K^+ decays and improved resolution at NA62.
 - Studies of invisible A' decays at NA62 ($K^+ \rightarrow \pi^+ + \text{nothing}$).
 - Probing lower ε^2: sensitivity studies for $\pi^0 \rightarrow \gamma A'$ with a displaced $A' \rightarrow e^+e^-$ vertex.
 - Extended LFV and K-physics programme
Thank you for your attention

francesco.gonnella@lnf.infn.it
Lepton flavour violation in K decays

- Copious production: high statistics
- Simple decay topologies: clean experimental signatures
- High NP mass scales accessible for tree-level contributions:
 - $m_X \sim 100$ TeV

<table>
<thead>
<tr>
<th>Mode</th>
<th>UL at 90% CL</th>
<th>Experiment</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>$K^+ \rightarrow \pi^+\mu^+e^-$</td>
<td>1.3×10^{-11}</td>
<td>BNL E777/E865</td>
<td>PRD 72 (2005) 012005</td>
</tr>
<tr>
<td>$K^+ \rightarrow \pi^+\mu^-e^+$</td>
<td>5.2×10^{-10}</td>
<td>BNL E865</td>
<td>PRL 85 (2000) 2877</td>
</tr>
<tr>
<td>$K^+ \rightarrow \pi^-\mu^+e^+$</td>
<td>5.0×10^{-10}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$K^+ \rightarrow \pi^-e^+e^+$</td>
<td>6.4×10^{-10}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$K^\pm \rightarrow \pi^\mp\mu^\pm\mu^\pm$</td>
<td>1.1×10^{-9}</td>
<td>CERN NA48/2</td>
<td>PLB 697 (2011) 107</td>
</tr>
<tr>
<td>$K^+ \rightarrow \mu^-\nu e^+e^+$</td>
<td>2.0×10^{-8}</td>
<td>Geneva-Saclay</td>
<td>PL 62B (1976) 485</td>
</tr>
<tr>
<td>$K^+ \rightarrow e^-\nu\mu^+\mu^+$</td>
<td>no data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\pi^0 \rightarrow \mu^+e^-$</td>
<td>3.6×10^{-10}</td>
<td>FNAL KTeV</td>
<td>PRL 100 (2008) 131803</td>
</tr>
<tr>
<td>$\pi^0 \rightarrow \mu^-e^+$</td>
<td>3.6×10^{-10}</td>
<td></td>
<td>(K_L searches also report)</td>
</tr>
</tbody>
</table>

- Expected NA62 single event sensitivities: $\sim 10^{-12}$ for K^\pm decays
- NA62 is capable of improving on all these decay modes
Simulation of π_0^D background

Kinematic variables:

$$x = \frac{(Q_1 + Q_2)^2}{m_{\pi_0}^2} = \left(\frac{m_{ee}}{m_{\pi_0}}\right)^2, \quad y = \frac{2P(Q_1 - Q_2)}{m_{\pi_0}^2(1 - x)}$$

Differential decay rate (lowest order):

$$\frac{d^2\Gamma}{dx dy} = \Gamma_0 \frac{\alpha}{\pi} |F(x)|^2 \frac{(1 - x)^3}{4x} \left(1 + y^2 + \frac{r^2}{x}\right)$$

(r=2m_e/m_\pi)

Radiative corrections:

$$\frac{d\Gamma}{dx dy} = \delta(x, y) \frac{d\Gamma^0}{dx dy}$$

Limitation: no emission of real photons.

Mikaelian and Smith, PRD5 (1972) 1763
Husek, Kampf and Novotný, arXiv:1504.06178

π^0 transition form-factor: $F(x) = 1 + ax$.

- Theory expectation for the TFF slope: $a = 0.0307 \pm 0.0006$ [Hoferichter et al., 2014]
 or the PDG average $a = 0.032 \pm 0.004$ [PDG 2014] cannot be used due to limited precision on the radiative corrections to π^0_D.
- An effective TFF slope value is obtained from the π^0_D data sample itself.
NA62 beam line

<table>
<thead>
<tr>
<th>Beam Parameters</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>400 GeV/c Protons on Target / s</td>
<td>1.1×10^{12}</td>
</tr>
<tr>
<td>75 GeV/c Hadrons / s</td>
<td>750×10^6</td>
</tr>
<tr>
<td>K^+ decays / s</td>
<td>4.5×10^6</td>
</tr>
<tr>
<td>K^+ decays / y</td>
<td>4.5×10^{12}</td>
</tr>
<tr>
<td>Beam composition</td>
<td>p 70% π 24% K 6%</td>
</tr>
</tbody>
</table>

- NA62 uses SPS 400 GeV/c proton beam
- Proton beam interacts with a Beryllium target
- Among the interaction products, 75 GeV/c K^+ are selected
- Nonetheless kaons, are a minimal part of the beam (45 MHz / 750 MHz)