Recent results and prospects from NA62

Andrea Bizzeti
University of Modena and Reggio Emilia
and I.N.F.N. Sezione di Firenze, Italy

on behalf of the NA62 collaboration

Birmingham, Bratislava, Bristol, Bucharest, CERN, Dubna(JINR), Fairfax, Ferrara, Florence, Frascati, Glasgow, Liverpool, Louvain-la-Neuve, Mainz, Merced, Moscow(INR), Naples, Perugia, Pisa, Prague, Protvino(IHEP), Rome I, Rome II, San Luis Potosi, SLAC, Sofia, TRIUMF, Turin, Vancouver(UBC)

Outline

- Measurement of the π^0 transition form factor from 2007 data
- Status and prospects for $K^+ \rightarrow \pi^+ \nu \bar{\nu}$
NA62 high-intensity facility to study rare kaon decays

Kaon Physics at CERN SPS

'82-'92 NA31: Direct CPV in $K^0_{L,S}$

'97-'01 NA48: Direct CPV in $K^0_{L,S}$

'02 NA48/1: K_s rare decays

'03-'04 NA48/2: K^{\pm} CP violation, semileptonic, low energy QCD

'07-'08 NA62: lepton universality $K^\pm_{e2}/K^\pm_{\mu2}$ (using the NA48 apparatus)

2014- NA62: $K^+ \rightarrow \pi^+ \nu \bar{\nu}$
Other physics opportunities can be studied at NA62

- **Standard Kaon Physics**
 - χPT studies: $K^+ \to \pi^+ \gamma\gamma$, $K^+ \to \pi^+ \pi^0 e^+ e^-$, $K^+ \to \pi\pi l^+\nu$
 - Lepton Universality studies: $R_K = \Gamma(K^+ \to e^+\nu)/\Gamma(K^+ \to \mu^+\nu)$

- **LFV/LNV in Kaon decays**
 - $K^+ \to \pi^+ \mu^+\mu^-$, $K^+ \to \pi^- \mu^+ e^+$, $K^+ \to \pi^- l^+ l^+$

- **Heavy neutrino searches**
 - $K^+ \to l^+ \nu_H$
 - ν_H (from K, D decays) $\to \pi^\pm l^\mp$

- **π^0 decays**
 - $\pi^0 \to$ invisible, $\pi^0 \to 3\gamma$ (4γ), $\pi^0 \to \gamma U$

- **Dark sector searches**
 - Long living dark photon (from prompt mesons decays) $\to l^+ l^-$
 - Long living axion-like (produced in beam-dump config.) $\to \gamma \gamma$
NA62 2007 data taking using the NA48 apparatus

- Main goal: \(R_K = \Gamma(K_{e2})/\Gamma(K_{\mu 2}) \)

- Simultaneous \(K^\pm \) beams,
 \(P_K = (74.0 \pm 1.4) \) GeV/c

- Main trigger: electron from \(K_{e2} \)
 → efficient for \(\pi_0^D \) decays

Main detectors:

- Liquid Krypton EM calorimeter
 high granularity, quasi-homogeneous
 \(\sigma_E/E = 3.2%/E^{1/2} \oplus 9%/E \oplus 0.42% \)

- Scintillator hodoscope (2 planes)
 fast trigger, \(\sigma_t = 150 \) ps

- Magnetic spectrometer (4 DCHs)
 4 views/DCH: redundancy ⇒ efficiency
 \(\sigma_p/p = 0.48% \oplus 0.009%p \) (\(p \) in GeV/c)
\(\pi^0 \) transition form factor (TFF)

\(K^\pm \) decaying in flight are used as a high-statistics source of tagged neutral pions to study the \(\pi^0 \) Dalitz decay: \(K^+ \rightarrow \pi^+ \pi^0 \rightarrow \pi^+ (\gamma e^+ e^-) \)

The Transition Form Factor \(F(x) \) describes the hadronic contribution at decay vertex

Kinematic variables \(x, y \)

\[
x = \frac{(P_{e+} + P_{e-})^2}{m^2_{\pi^0}} \leq x \leq 1
\]

\[
y = \frac{2P_{\pi^0} \cdot (P_{e+} - P_{e-})}{m^2_{\pi^0} (1 - x)}
\]

\(|y| \leq \beta = \sqrt{1 - r^2/x}

The \(\pi^0 \) TFF enters predictions for the hadronic \(\gamma \gamma \) scattering contribution to \((g - 2)_\mu \)
Dalitz x spectrum in π^0 decays

$$\frac{1}{\Gamma(\pi^0_{2\gamma})} \frac{d\Gamma(\pi^0_D)}{dx} = \frac{2\alpha}{3\pi} \frac{(1-x)^3}{x} \left(1 + \frac{r^2}{2x}\right) \sqrt{1 - \frac{r^2}{x}} \left[1 + \delta(x)\right] \left(1 + ax\right)^2$$

Radiative correction

$$\delta(x) = \delta_{\text{virt}}(x) + \delta_{\text{brem}}(x) + \delta_{\gamma \text{ IR}}(x)$$

[Mikaelian and Smith, Phys. Rev D 5 (1972) 1763]

$\alpha = \text{TFF slope parameter}$
Data selection

- 3 charged tracks originating from a common vertex
- one photon in the LKr calorimeter
- full kinematic closure; \(x > 0.01 \)

1.05 \times 10^6 fully reconstructed \(\pi^0 \rightarrow \gamma e^+e^- \) candidates
Theoretical predictions:

- \(a = (2.90 \pm 0.50) \times 10^{-2} \) Chiral Perturbation Theory \([K. Kampf et al., EPJ C46(2006) 191]\)
- \(a = (3.07 \pm 0.06) \times 10^{-2} \) Dispersion Theory \([M. Hoferichter et al., EPJ C74(2014) 3180]\)
- \(a = (2.92 \pm 0.04) \times 10^{-2} \) Two-hadron saturation \([T. Husek et al., EPJ C75(2015) 586]\)

\[a = (3.70 \pm 0.53_{\text{stat}} \pm 0.36_{\text{syst}}) \times 10^{-2} \]
The $K \to \pi \nu \bar{\nu}$ decay

- FCNC loop processes forbidden at tree level in the SM

- Highest CKM suppression \Rightarrow very sensitive to New Physics

- Theoretically clean: short distance dynamics, no hadronic uncertainties.

\[
B(K^+ \to \pi^+ \nu \bar{\nu}) = (8.39 \pm 0.30) \cdot 10^{-11} \left(\frac{|V_{cb}|}{0.0407} \right)^{2.8} \left(\frac{\gamma}{73.2^\circ} \right)^{0.74} = (8.4 \pm 1.0) \cdot 10^{-11}
\]

\[
B(K_L \to \pi^0 \nu \bar{\nu}) = (3.36 \pm 0.05) \cdot 10^{-11} \left(\frac{|V_{ub}|}{0.00388} \right)^2 \left(\frac{\sin \gamma}{\sin 73.2^\circ} \right)^2 = (3.4 \pm 0.6) \cdot 10^{-11}
\]

- **Experimental measurements**

\[
B(K^+ \to \pi^+ \nu \bar{\nu}) = (17.3^{+11.5}_{-10.5}) \cdot 10^{-11} \quad [\text{Phys.Rev.D77(2008)052003, Phys.Rev.D79(2009)092004}]
\]

\[
B(K_L \to \pi^0 \nu \bar{\nu}) < 2.6 \cdot 10^{-8} \ (90\% \ C.L.) \quad [\text{Phys.Rev.D81 (2010) 072004}]
\]
\(K \to \pi \nu \bar{\nu} \) NP sensitivity (complementary to LHC)

- Models with \(Z' \) gauge boson contribution to FCNC at tree level, sensitive to mass scales beyond those explored by LHC [Buras et al., JHEP 11 (2015) 166]

- Best probe of MSSM non-MFV (still not excluded by recent LHCb data) [Tanimoto and Yamamoto, PTEP 2015, 053B07; Isidori et al., JHEP 08 (2006) 064]

Some theoretical predictions for \(K^+ \to \pi^+ \nu \bar{\nu} \) and \(K_L^0 \to \pi^0 \nu \bar{\nu} \):

- \(Z' \) model, \(M_{Z'} = 500 \) TeV
- Littlest Higgs with T parity
- Randall-Sundrum
The NA62 experiment for $K \to \pi \nu \bar{\nu}$

Primary Goal

- Measurement of $B(K^+ \to \pi^+ \nu \bar{\nu})$ with 10% accuracy by collecting $O(100)$ events over 2 years of data taking

Technique: in-flight K^+ decay \rightarrow High momentum kaon

Requirements (with $B \approx B_{SM} \sim 8 \cdot 10^{-11}$)

- Statistics:
 - 10^{13} K^+ decays (in 2 years)
 - $\sim 10\%$ acceptance
 \rightarrow Kaon beam intensity

- Systematics:
 - $> 10^{12}$ background rejection
 - $< 10\%$ precise background measurement
 \rightarrow Signal purity
NA62 apparatus

Detectors for the Secondary Beam
- Kaon ID (KTAG)
- Beam Tracker (GTK)
- Beam guard ring (CHANTI)

Secondary Beam
- SPS proton
 - 400 GeV
 - 10^{12} p/s
 - 3.5 s spill
- Momentum selection & collimation

Kaon Decays
- $\Delta p/p \sim 1\%$
- X,Y Divergence <100μrad
- K(6%), π(70%), p(23%)
- Total rate: 750 MHz
- Beam size: 6.0\times2.7 cm2

Detectors for decay products
- Charged particle tracker (STRAWs)
- Charged particle time stamping (RICH)
- Photon detector (E.M. Calorimeters)
- Particle ID (RICH, Hadronic Calorimeter)

Decay volume
- Upstream
- Downstream

X, Y Divergence <100μrad
- K(6%), π(70%), p(23%)
- Total rate: 750 MHz
- Beam size: 6.0\times2.7 cm2

E.M. calorimeters (large angles)
- Hadron calorimeter
- LKr

E.M. calorimeters (small angles)
- Straw Spectrometer
$K \rightarrow \pi \nu \bar{\nu}$ analysis strategy

Signal signature:
- incoming K^+
- outgoing π^+ in time with the K^+
- nothing else

Background: other K^+ decays; beam activity

Experimental principles:
1. Precise kinematic reconstruction
 \[m_{\text{miss}}^2 = (P_K - P_\pi)^2 \]
2. PID: upstream K, downstream $e/\mu/\pi$
3. Hermetic γ detection
4. Sub-ns timing

Key analysis requirements:
- Two signal regions in m_{miss}^2
- $15 \text{ GeV/c} < p_\pi < 35 \text{ GeV/c}$
- $65 \text{ m long decay region}$

Expect 45 SM signal events/year, <10 background
Experimental status

- **Beam** commissioned up to nominal intensity
- **Tracking detectors:**
 - Beam tracker (GTK) *partially commissioned*
 - Straw spectrometer *commissioned*
- **Čerenkov detectors:**
 - Beam Kaon ID (KTAG) *commissioned*
 - RICH *commissioned*
- **E.M. calorimeters:** large (LAVs) and small angles *commissioned*
- **Hadronic calorimeters:** MUV1, MUV2, muon veto MUV3 *commissioned*
- **Trigger:**
 - L0 *commissioned*
 - L1/L2 *partially commissioned*
- **Data samples for data quality studies**
 - Low intensity data taken with a minimum bias trigger
 - Samples at half and full intensity taken with a calorimeter trigger
Signal topology and Kaon ID

One track selection (OTS)

▶ Single downstream track
 • matching energy in calorimeters

▶ Beam track matching:
 • the downstream track
 • a K^+ signal in KTAG (Kaon ID)

A. Bizzeti
NA62 results and prospects

Track origin in the fiducial region

Not Kaon ID

Beam scattering
Kinematics: upstream (GTK) and downstream (STRAWs) spectrometers

Goal: \((10^4 \div 10^5)\) suppression factor for the main kaon decay modes

Resolution on \(m_{\text{miss}}^2\) close to design

\(\sim 10^3\) kinematic suppression in 2015
Downstream PID: RICH + calorimeters

Goal: $\sim 10^7 \pi/\mu$ separation, mainly to suppress $K^+ \rightarrow \mu^+\nu$

RICH - after one track selection

- $80\% \pi^+$ efficiency in RICH with $\sim 10^2 \mu$ suppression
- Simple cut-based analysis on calorimeters $\Rightarrow (10^4 \div 10^6) \mu$ suppression with $(90\% \div 40\%) \pi^+$ efficiency. Room for improvements.
Photon rejection: e.m. calorimeters

Goal: $\sim 10^8$ rejection for π^0s from $K^+ \rightarrow \pi^+ \pi^0$

- Calorimeter (forward)
- Calorimeter (small angles)
- Calorimeters (large angles)

- Measured on data using $K^+ \rightarrow \pi^+ \pi^0$
- Selected kinematically
 - $P_{\pi^+} < 35$ GeV/c $\Rightarrow E_{\pi^0} > 40$ GeV
 - $O(10^6)$ rejection already obtained
 - 2015 measurement statistically limited
Conclusions

- Preliminary world best measurement of the π^0 form factor slope
 \[a = (3.70 \pm 0.53_{\text{stat}} \pm 0.36_{\text{syst}}) \times 10^{-2} \] (NA62 2007 data)

- Commissioning of NA62 for $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ is almost completed

- Preliminary study of data taken at low intensity
 - Physics sensitivity for $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ is in line with design
 - Analysis of data taken at higher intensity is ongoing
 - A further compelling physics program is going to be addressed

- NA62 resumed data taking in May 2016 for a ~ 200 days run