Prospects for $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ observation at CERN-NA62

Cristina Biino * - INFN Torino

SUSY 2015 – Lake Tahoe, 23-29 August 2015

*On behalf of the NA62 Collaboration:
CERN, Ferrara, Firenze, LNF, Napoli, Perugia, Pisa, Roma1, Roma2, Torino, UC Louvain, Sofia, Bucharest, Prague, Mainz, Birmingham, Bristol, Glasgow, Liverpool, TRIUMF, UBC, IHEP, INR, JINR, George Mason, SLAC, UC Merced, BU, BNL, San Luis Potosi
The $K^+\rightarrow \pi^+\nu\bar{\nu}$ decay is a FCNC process, in the SM is forbidden at tree level and dominated by short distance dynamics.

- Very clean theoretical scenario
 - No hadronic uncertainties
 - Electroweak amplitude is largely dominated by top quark loops
 - Dependence on the product of CKM matrix elements $V_{ts}^* V_{td}$

- SM prediction takes into account:
 - 1 loop contributions at the leading order
 - NLO QCD correction to top quark contributions
 - NLO electroweak corrections to both top and charm contributions
 - NNLO QCD corrections to charm contributions
 - Isospin breaking and non-perturbative effects

Box and penguin, one loop diagrams at leading order

Z-penguin

W-box
Short-distance contribution (top quark) dominance → theoretically clean dependence on the product of CKM matrix elements $V_{ts}V_{td}^*$.

- $K \rightarrow \pi \nu\nu$ is one of the few processes that can be used to verify accurately the SM Unitary.

SM suppression and proportionality to powers of $V_{ts}V_{td}^*$ allows:
 - stringent test of the SM
 - high sensitivity to New Physics (NP)

Complementary to LHC
Theoretical prediction

Golden modes:

\[K \rightarrow \pi \nu \bar{\nu} \]

\[
\begin{align*}
BR(K_L \rightarrow \pi^0 \nu \bar{\nu}) &= (3.00 \pm 0.30) \times 10^{-11} \\
BR(K^+ \rightarrow \pi^+ \nu \bar{\nu}) &= (9.11 \pm 0.72) \times 10^{-11}
\end{align*}
\]

\(V_{cb}	\)	9.9%
\(\delta P_{c,u} \)	2.9%		
\(P_c^{SD}(X) \)	6.7%		
\(X_t \)	1.8%		
other	0.9%		

Error budget

\[P_c = P_c^{SD}(X) + X_t + \text{other} + \gamma \]

\[\gamma \]

\[|V_{cb}| \]

\[|\delta P_{c,u}| \]

\[P_c^{SD}(X) \]

\[X_t \]

\[\text{other} \]

\[\gamma \]

\[|V_{cb}| \]

\[|\delta P_{c,u}| \]

\[P_c^{SD}(X) \]

\[X_t \]

\[\text{other} \]

\[\gamma \]

\(V_{cb}	\)	9.9%
\(\delta P_{c,u} \)	2.9%		
\(P_c^{SD}(X) \)	6.7%		
\(X_t \)	1.8%		
other	0.9%		

\[Error \text{ budget} \]

\[P_c = P_c^{SD}(X) + X_t + \text{other} + \gamma \]

\[|V_{cb}| \]

\[|\delta P_{c,u}| \]

\[P_c^{SD}(X) \]

\[X_t \]

\[\text{other} \]

\[\gamma \]

\[|V_{cb}| \]

\[|\delta P_{c,u}| \]

\[P_c^{SD}(X) \]

\[X_t \]

\[\text{other} \]

\[\gamma \]

\[|V_{cb}| \]

\[|\delta P_{c,u}| \]

\[P_c^{SD}(X) \]

\[X_t \]

\[\text{other} \]

\[\gamma \]

\[|V_{cb}| \]

\[|\delta P_{c,u}| \]

\[P_c^{SD}(X) \]

\[X_t \]

\[\text{other} \]

\[\gamma \]

\[|V_{cb}| \]

\[|\delta P_{c,u}| \]

\[P_c^{SD}(X) \]

\[X_t \]

\[\text{other} \]

\[\gamma \]

\[|V_{cb}| \]

\[|\delta P_{c,u}| \]

\[P_c^{SD}(X) \]

\[X_t \]

\[\text{other} \]

\[\gamma \]

\[|V_{cb}| \]

\[|\delta P_{c,u}| \]

\[P_c^{SD}(X) \]

\[X_t \]

\[\text{other} \]

\[\gamma \]

\[|V_{cb}| \]

\[|\delta P_{c,u}| \]

\[P_c^{SD}(X) \]

\[X_t \]

\[\text{other} \]

\[\gamma \]

\[|V_{cb}| \]

\[|\delta P_{c,u}| \]

\[P_c^{SD}(X) \]

\[X_t \]

\[\text{other} \]

\[\gamma \]

\[|V_{cb}| \]

\[|\delta P_{c,u}| \]

\[P_c^{SD}(X) \]

\[X_t \]

\[\text{other} \]

\[\gamma \]

\[|V_{cb}| \]

\[|\delta P_{c,u}| \]

\[P_c^{SD}(X) \]

\[X_t \]

\[\text{other} \]

\[\gamma \]

\[|V_{cb}| \]

\[|\delta P_{c,u}| \]

\[P_c^{SD}(X) \]

\[X_t \]

\[\text{other} \]

\[\gamma \]

\[|V_{cb}| \]

\[|\delta P_{c,u}| \]

\[P_c^{SD}(X) \]

\[X_t \]

\[\text{other} \]

\[\gamma \]

\[|V_{cb}| \]

\[|\delta P_{c,u}| \]

\[P_c^{SD}(X) \]

\[X_t \]

\[\text{other} \]

\[\gamma \]

\[|V_{cb}| \]

\[|\delta P_{c,u}| \]

\[P_c^{SD}(X) \]

\[X_t \]

\[\text{other} \]

\[\gamma \]

\[|V_{cb}| \]

\[|\delta P_{c,u}| \]

\[P_c^{SD}(X) \]

\[X_t \]

\[\text{other} \]

\[\gamma \]

\[|V_{cb}| \]

\[|\delta P_{c,u}| \]

\[P_c^{SD}(X) \]

\[X_t \]

\[\text{other} \]

\[\gamma \]

\[|V_{cb}| \]

\[|\delta P_{c,u}| \]

\[P_c^{SD}(X) \]

\[X_t \]

\[\text{other} \]

\[\gamma \]

\[|V_{cb}| \]

\[|\delta P_{c,u}| \]

\[P_c^{SD}(X) \]

\[X_t \]

\[\text{other} \]

\[\gamma \]

\[|V_{cb}| \]

\[|\delta P_{c,u}| \]

\[P_c^{SD}(X) \]

\[X_t \]

\[\text{other} \]

\[\gamma \]

\[|V_{cb}| \]

\[|\delta P_{c,u}| \]

\[P_c^{SD}(X) \]

\[X_t \]

\[\text{other} \]

\[\gamma \]

\[|V_{cb}| \]

\[|\delta P_{c,u}| \]

\[P_c^{SD}(X) \]

\[X_t \]

\[\text{other} \]

\[\gamma \]

\[|V_{cb}| \]

\[|\delta P_{c,u}| \]

\[P_c^{SD}(X) \]

\[X_t \]

\[\text{other} \]

\[\gamma \]
Measurement of charged $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ decay and neutral $K_L \rightarrow \pi^0 \nu \bar{\nu}$ modes can discriminate different NP scenarios.

RSc: Randall-Sundrum mechanism [M.Blanke et al., JHEP 0903 (2009) 108]

MFV: Minimal Flavor Violation [W.Altmannshofer et al., Nucl.Phys. B830]

Probe of MSSM non-MFV, not yet excluded by LHC [G. Isidori et al., JHEP 0608 (2006) 088]

Measurement of $|V_{td}|$ complementary to measurements from B-B mixing

$\delta(BR)/BR = 10\%$ implies $\delta(|V_{ts}|)/|V_{td}| = 7\%$
• $\text{BR}(K^+ \rightarrow \pi^+ \nu \bar{\nu}) = (17.3^{+11.5}_{-10.5}) \times 10^{-11}$ (from 7 events)

• $\text{BR}(K_L \rightarrow \pi^0 \nu \bar{\nu}) < 2600 \times 10^{-11}$

Experimental vs. Theoretical Status

<table>
<thead>
<tr>
<th></th>
<th>SM prediction</th>
<th>Experiment</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B(K^+ \to \pi^+ \nu \bar{\nu})$</td>
<td>$(9.11 \pm 0.72) \times 10^{-11}$</td>
<td>$(17.3 , ^{+11.5}_{-10.5}) \times 10^{-11}$</td>
</tr>
<tr>
<td>$B(K^0_L \to \pi^0 \nu \bar{\nu})$</td>
<td>$(3.00 \pm 0.30) \times 10^{-11}$</td>
<td>$< 2600 \times 10^{-11}$</td>
</tr>
</tbody>
</table>

Gap between theoretical precision and large experimental errors!

NA62 aims at ~10% precision measurement of the BR($K^+ \to \pi^+ \nu \bar{\nu}$) in 2 years of data taking
Experimental requirements

NA62 goal: measure $\text{BR}(K^+ \rightarrow \pi^+ \nu \bar{\nu})$ with 10% accuracy

\Rightarrow O(100) SM events + systematics control at % level

- Assuming a 10% signal acceptance and a $\text{BR}(K^+ \rightarrow \pi^+ \nu \bar{\nu})$
 $\sim 10^{10}$ at least 10^{13} Kaon decays are required
- Rejection factor for dominant kaon decays of the order of 10^{12} (for background <20%)
- Systematics: <10% precision background measurement

NA62 design criteria: Kaon beam intensity, signal acceptance, background suppression

- Technique: high momentum Kaons and in flight decay

★ Signal signature: one beam K^+ track fully matched with one final state π^+ track
★ Basic ingredients: precise timing & kinematic cuts

P_{K^+}

P_{π^+}

$\theta_{K\pi}$

P_{ν}

$P_{\bar{\nu}}$

C. Biino – SUSY 2015
Kinematically discriminating variable:
\[m_{\text{miss}}^2 = (P_K - P_\pi)^2 \]
where the particle from the decay is assumed to be a pion.

2 signal regions, on each side of the $K^+ \rightarrow \pi^+\pi^0$ peak, are used to remove contributions from more than 90% of main K^+ background decays.
Na62 experimental strategy

Background suppression:

<table>
<thead>
<tr>
<th>K decay background</th>
<th>BR</th>
<th>Rejection tools</th>
</tr>
</thead>
<tbody>
<tr>
<td>K⁺ → μ⁺ ν</td>
<td>0.6355</td>
<td>μ-ID + kinematics</td>
</tr>
<tr>
<td>K⁺ → π⁺ π⁰</td>
<td>0.2066</td>
<td>γ-veto + kinematics</td>
</tr>
<tr>
<td>K⁺ → π⁺ π⁺ π⁻</td>
<td>0.0559</td>
<td>π⁻-ID + multi-track + kinematics</td>
</tr>
<tr>
<td>K⁺ → π⁺ π⁰ π⁰</td>
<td>0.0176</td>
<td>γ-veto + kinematics</td>
</tr>
<tr>
<td>K⁺ → π⁰ e⁺ ν</td>
<td>0.0507</td>
<td>e-ID + kinematics + γ-veto</td>
</tr>
<tr>
<td>K⁺ → π⁰ µ⁺ ν</td>
<td>0.0335</td>
<td>μ-ID + kinematics + γ-veto</td>
</tr>
<tr>
<td>K⁺ → π⁺ π⁻ e⁺ ν</td>
<td>4.257 × 10⁻⁵</td>
<td></td>
</tr>
</tbody>
</table>

- Beam tracking
- Photon veto
- Muon veto
- π/μ/e identification

\[P_{π⁺} < 35 \text{ GeV/c to ensure} \quad P_{π⁰} > 40 \text{ GeV/c} \quad \sim 92\% \Rightarrow \sim 8\% \]
Decay and Event Rate per Year

<table>
<thead>
<tr>
<th>Decay</th>
<th>event/year</th>
</tr>
</thead>
<tbody>
<tr>
<td>$K^+ \rightarrow \pi^+ \nu \bar{\nu} (*)$</td>
<td>45</td>
</tr>
<tr>
<td>$K^+ \rightarrow \pi^+ \pi^0$</td>
<td>5</td>
</tr>
<tr>
<td>$K^+ \rightarrow \mu^+ \nu$</td>
<td>1</td>
</tr>
<tr>
<td>$K^+ \rightarrow \pi^+ \pi^+ \pi^-$</td>
<td>< 1</td>
</tr>
<tr>
<td>$K^+ \rightarrow \pi^+ \pi^- e^+ \nu + \text{other 3 track decays}$</td>
<td>< 1</td>
</tr>
<tr>
<td>$K^+ \rightarrow \pi^+ \pi^0 \gamma (IB)$</td>
<td>1.5</td>
</tr>
<tr>
<td>$K^+ \rightarrow \mu^+ \nu \gamma (IB)$</td>
<td>0.5</td>
</tr>
<tr>
<td>$K^+ \rightarrow \pi^0 e^+ (\mu^+) \nu + \text{others}$</td>
<td>negligible</td>
</tr>
<tr>
<td>Total background</td>
<td>< 10</td>
</tr>
</tbody>
</table>

(*) [SM] (flux 4.5×10^{12} K^+ decay/year)
The NA62 experiment at CERN

Jura mountains

NA48 / NA62

SPS

France

LHC

Switzerland

~200 participants from 30 institutions

2005 Proposal
2009 Approved
2010 Technical design
2012 Technical run (partial layout)
2014 Pilot Run
2015-18 Physics Runs
The NA62 beam and detector

- CERN SPS 400 GeV/c primary proton beam on a Be target
- Secondary un-separated positive hadron beam (6% K⁺); momentum 75 (±1%) GeV/c
- Nominal beam intensity: 750 MHz (~45 MHz K⁺ decays in the fiducial volume)

High intensity and fast timing

High performance e.m. calorimeter

High rate precision and low mass tracking

Redundant particle ID

Hermetic photon veto
The NA62 detector
First Look at 2014 Data Quality

(no GTK, 3 out of 4 Straw ch., no RICH mirror alignment, no photon rejection)

- Events with only 1 track in the straw detector (40ns time window)
- 10^2 muon rejection at trigger level
First Look @2014 Data: Missing Mass

Requiring K-ID from KTAG in time with the spectrometer track
Requiring decay vertex in fiducial region

$P_{\text{reco}} < 35 \text{ GeV/c}$

Requiring $K^+ \rightarrow \pi^+ \pi^0$

Region I

$K^+ \rightarrow \mu^+ \nu$

Region II

$K^+ \rightarrow \pi^+ \pi^+ \pi^-$

Entries 10897
Mean 0.02742
RMS 0.0321

$K^+ \rightarrow \pi^+ \pi^0$
The rare $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ decay

$BR_{\text{theor}} = (9.11 \pm 0.72) \times 10^{-11}$ \hspace{1cm} $BR_{\text{exp}} = (17.3^{+11.5}_{-10.5}) \times 10^{-11}$

- Gap between theoretical precision and large experimental error
- Sensitive probe to New Physics
- Motivations for a strong experimental effort

- NA62: a substantial upgrade of the previous CERN experiments, designed to measure the BR with 10% precision
- NA62 successful pilot run in 2014
- Data taking starting: NA62 ready for physics and planning to collect the world largest sample of K^+

NA62 marks CERN’s return to the exploration of the Standard Model using high-intensity Kaon beams.

Kaons are partner of LHC in the quest for physics beyond the SM.
Extra material
Charged Kaon Beams: different exp. techniques.

“Stopped” → work in Kaon frame, high Kaon purity (electromagneto-static-separators); compact detectors

“In-Flight” → decays in vacuum (no scattering, no interactions) ; RF separated or unseparated beams; extended decay regions

<table>
<thead>
<tr>
<th>Exp</th>
<th>Machine</th>
<th>Meas. or UL 90% CL</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argonne</td>
<td>< 5.7 x 10^{-5}</td>
<td>Stopped, HL Bubble chamber</td>
<td></td>
</tr>
<tr>
<td>Bevatron</td>
<td>< 5.6 x 10^{-7}</td>
<td>Stopped, Spark chamber</td>
<td></td>
</tr>
<tr>
<td>KEK</td>
<td>< 1.4 x 10^{-7}</td>
<td>Stopped, π⁺ μ⁺ e⁺</td>
<td></td>
</tr>
<tr>
<td>E787</td>
<td>(1.57 ± 1.75 -0.82) x 10^{-10}</td>
<td>Stopped</td>
<td></td>
</tr>
<tr>
<td>E949</td>
<td>(1.73 ± 1.15 -1.05) x 10^{-10}</td>
<td>Stopped</td>
<td></td>
</tr>
<tr>
<td>NA62</td>
<td>SPS</td>
<td>In-Flight, unseparated.</td>
<td></td>
</tr>
</tbody>
</table>
Beyond the baseline

<table>
<thead>
<tr>
<th>Decay</th>
<th>Physics</th>
<th>Present limit (90% C.L.) / Result</th>
<th>NA62</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\pi^+\mu^+e^-$</td>
<td>LFV</td>
<td>1.3×10^{-11}</td>
<td>0.7×10^{-12}</td>
</tr>
<tr>
<td>$\pi^+\mu^-e^+$</td>
<td>LFV</td>
<td>5.2×10^{-10}</td>
<td>0.7×10^{-12}</td>
</tr>
<tr>
<td>$\pi^-\mu^+e^+$</td>
<td>LNV</td>
<td>5.0×10^{-10}</td>
<td>0.7×10^{-12}</td>
</tr>
<tr>
<td>$\pi^-e^+e^+$</td>
<td>LNV</td>
<td>6.4×10^{-10}</td>
<td>2×10^{-12}</td>
</tr>
<tr>
<td>$\pi^-\mu^+\mu^+$</td>
<td>LNV</td>
<td>1.1×10^{-9}</td>
<td>0.4×10^{-12}</td>
</tr>
<tr>
<td>$\mu^-ve^+e^+$</td>
<td>LNV/LFV</td>
<td>2.0×10^{-8}</td>
<td>4×10^{-12}</td>
</tr>
<tr>
<td>$e^-\nu\mu^+\mu^+$</td>
<td>LNV</td>
<td>No data</td>
<td>10^{-12}</td>
</tr>
<tr>
<td>π^+X^0</td>
<td>New Particle</td>
<td>5.9×10^{-11}</td>
<td>$m_{X^0} = 0$</td>
</tr>
<tr>
<td>$\pi^+\chi\chi$</td>
<td>New Particle</td>
<td>$-$</td>
<td>10^{-12}</td>
</tr>
<tr>
<td>$\pi^+\pi^+e^-\nu$</td>
<td>$\Delta S \neq \Delta Q$</td>
<td>1.2×10^{-3}</td>
<td>10^{-11}</td>
</tr>
<tr>
<td>$\pi^+\pi^+\mu^-\nu$</td>
<td>$\Delta S \neq \Delta Q$</td>
<td>3.0×10^{-6}</td>
<td>10^{-11}</td>
</tr>
<tr>
<td>$\pi^+\gamma$</td>
<td>Angular Mom.</td>
<td>2.3×10^{-9}</td>
<td>10^{-12}</td>
</tr>
<tr>
<td>$\mu^+\nu\nu$</td>
<td>Heavy neutrino</td>
<td>Limits up to $m_{\nu_h} = 350$ MeV</td>
<td></td>
</tr>
</tbody>
</table>

R_K	LU	$(2.488 \pm 0.010) \times 10^{-5}$	$>\times 2$ better
$\pi^+\gamma\gamma$	χPT	$<$ 500 events	10^5 events
$\pi^0\pi^0\gamma\gamma$	χPT	66000 events	$O(10^6)$
$\pi^0\pi^0\mu^+\nu$	χPT	$-$	$O(10^5)$
New Physics Sensitivity

- **Z’ gauge boson mediating FCNC at tree level**

- **Littlest Higgs with T-parity**

- **Custodial Randall-Sundrum**

 [M. Blanke et al., JHEP 0903 (2009) 108]

- **Best probe of MSSM non-MFV (still not excluded by LHC)**

 [G. Isidori et al., JHEP 0608 (2006) 088]
Recent K^\pm experiments at CERN

<table>
<thead>
<tr>
<th>Experiment</th>
<th>NA48/2 (K^\pm)</th>
<th>NA62-R$_K$ (K^\pm)</th>
<th>NA62 (K^+; starting)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beam momentum, GeV/c</td>
<td>60</td>
<td>74</td>
<td>75</td>
</tr>
<tr>
<td>RMS momentum bite, GeV/c</td>
<td>2.2</td>
<td>1.4</td>
<td>0.8</td>
</tr>
<tr>
<td>Spectrometer thickness, X_0</td>
<td>2.8%</td>
<td>2.8%</td>
<td>1.8%</td>
</tr>
<tr>
<td>Spectrometer p_T kick, MeV/c</td>
<td>120</td>
<td>265</td>
<td>270</td>
</tr>
<tr>
<td>$M(K^\pm \rightarrow \pi^\pm\pi^\mp\pi^-)$ resolution, MeV/c2</td>
<td>1.7</td>
<td>1.2</td>
<td>0.8</td>
</tr>
<tr>
<td>K^\pm decays in fiducial volume</td>
<td>2×10^{11}</td>
<td>2×10^{10}</td>
<td>1.2×10^{13}</td>
</tr>
<tr>
<td>Main trigger</td>
<td>multi-track; $K^\pm \rightarrow \pi^\pm\pi^0\pi^0$</td>
<td>e^\pm</td>
<td>$K_{\pi\pi\pi}$ + ...</td>
</tr>
</tbody>
</table>

Kaon beams: sources of large clean tagged π^0 samples.

- In a K^\pm beam, ratio of number of decays $\pi^0/K^\pm \approx 1/3$.
- Principal π^0 source: $K^\pm \rightarrow \pi^\pm\pi^0$ (known as $K_{2\pi}$).
- Best data on many rare/forbidden π^0 decays come from K experiments.