The NA62 GigaTracker

Mathieu Perrin-Terrin* on behalf of the GTK Working Group

*CERN, INFN Torino, INFN Ferrara, UCL Louvain

February, 18th, 2016
The 14th Vienna Conference on Instrumentation
Vienna, Austria
The GigaTracker in a nutshell

- an hybrid **time-resolved** pixel detector (60mm × 27mm)
- tracking all particles in a beam with a rate up to 1GHz
- providing hit time with a resolution better than 200 ps
- implementing **micro-channel cooling** (HEP world first)
Outlines

1. Detector Purpose and Specifications
2. The TDCPix ASIC Assembly
3. The Detector Integration
4. Performance
Outlines

1. Detector Purpose and Specifications
2. The TDCPix ASIC Assembly
3. The Detector Integration
4. Performance
The NA62 Aim: Measuring $\mathcal{B}(K^+ \rightarrow \pi^+ \nu \bar{\nu})$

- **Ultra-rare** decay, $\mathcal{B} \sim 10^{-10}$, difficult final state

- GTK measures initial state kinematics and arrival time

| Beam Rate | 800 MHz - 1GHz
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.3 MHz/mm2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Radiation</th>
<th>10^{14} 1MeV eq. n/cm2/y</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efficiency</td>
<td>99%</td>
</tr>
<tr>
<td>Momentum Resolution</td>
<td>0.2%</td>
</tr>
<tr>
<td>Angular Resolution</td>
<td>16 μrad</td>
</tr>
<tr>
<td>Hit Time Resolution</td>
<td>200 ps RMS</td>
</tr>
<tr>
<td>Material Budget</td>
<td>$3 \times 0.5%X_0$</td>
</tr>
<tr>
<td>Detector Size</td>
<td>60mm \times 27mm</td>
</tr>
</tbody>
</table>

More on NA62: talks by N. Lurkin, L. Pontisso and poster by D. Soldi

mathieu.perrin-terrin@cern.ch (CERN) The NA62 GigaTracker 14th VCI 4/20
A challenging concept started in 2007
made real in 2013!
Outlines

1. Detector Purpose and Specifications
2. The TDCPix ASIC Assembly
3. The Detector Integration
4. Performance
The Full Pixel Matrix

- **Sensor** [FBK, CIS]
 Both p-in-n/n-in-p
 Bias: 300-600V
 Thickness: 200 µm
 MPV Charge per MIP: 2.4 fC

- **Bump-bonding** Sn-Pb [IZM]

- 10 TDCPix chips / station:
 130 nm CMOS [IBM]
 Thinned at 100 µm

- Detector replaced every 100 days of run (radiation)
The Full Pixel Matrix

- **Sensor** [FBK, CIS]
 - Both p-in-n/n-in-p
 - Bias: 300-600V
 - Thickness: 200µm
 - MPV Charge per MIP: 2.4fC

- **Bump-bonding** Sn-Pb [IZM]

- 10 TDCPix chips / station:
 - 130 nm CMOS [IBM]
 - Thinned at 100µm

- Detector replaced every 100 days of run (radiation)
The TDCPix ASIC

Some key numbers:
- 1800 pixels (40×45)
- 720 TDCs with 100ps bin
- 12.8 Gb/s output data
The TDCPix ASIC Assembly

The TDCPix ASIC

- Some key numbers:
 - 1800 pixels (40 × 45)
 - 720 TDCs with 100ps bin
 - 12.8 Gb/s output data

- Pixels integrate:
 - amplifier (70mV/fC, 5ns peak. time)
 - discriminator
 - DAC threshold trim
 - configuration register

mathieu.perrin-terrin@cern.ch (CERN)
The NA62 GigaTracker 14th VCI 9/20
The TDCPix ASIC

Some key numbers:
- 1800 pixels (40 × 45)
- 720 TDCs with 100ps bin
- 12.8 Gb/s output data

Pixels integrate:
- amplifier (70mV/fC, 5ns peak. time)
- discriminator
- DAC threshold trim
- configuration register

End of column (EoC) integrates:
- time-to-digital converters (TDC)
- data serialisers
The TDCPix ASIC Assembly

The TDCPix ASIC

- Some key numbers:
 - 1800 pixels (40 × 45)
 - 720 TDCs with 100ps bin
 - 12.8 Gb/s output data

- Pixels integrate:
 - amplifier (70mV/fC, 5ns peak. time)
 - discriminator
 - DAC threshold trim
 - configuration register

- End of column (EoC) integrates:
 - time-to-digital converters (TDC)
 - data serialisers

- **Power** consumption: 3.5W (mostly EoC)
End-Of-Columns

- Digital signal from 5 pixels in a column are sent to a multiplexer (HitArbiter)
End-Of-Columns

- **Digital signal** from 5 pixels in a column are sent to a *multiplexer* (HitArbiter)

- To each HitArbiter corresponds a **TDC pair** measuring leading and trailing edges → in total 360 TDC pair/chip
End-Of-Columns

- Digital signal from 5 pixels in a column are sent to a multiplexer (HitArbiter)
- To each HitArbiter corresponds a TDC pair measuring leading and trailing edges → in total 360 TDC pair/chip
- TDC have 100ps bins
End-Of-Columns

- Digital signal from 5 pixels in a column are sent to a multiplexer (HitArbiter).
- To each HitArbiter corresponds a TDC pair measuring leading and trailing edges → in total 360 TDC pair/chip.
- TDC have 100ps bins.
- Self triggered architecture.
End-Of-Columns

- Digital signal from 5 pixels in a column are sent to a **multiplexer** (HitArbiter)

- To each HitArbiter corresponds a **TDC pair** measuring leading and trailing edges → in total 360 TDC pair/chip

- **TDC** have 100ps bins

- **Self triggered** architecture

- Data sent out with four 3.2 Gbits/s serialisers
Outlines

1. Detector Purpose and Specifications
2. The TDCPix ASIC Assembly
3. The Detector Integration
4. Performance

mathieu.perrin-terrin@cern.ch (CERN) The NA62 GigaTracker 14th VCI
Mechanical Integration

- **Detector** glued on 130µm (currently 210µm) Silicon Cooling Plate

![Diagram of mechanical integration](image)
Mechanical Integration

- **Detector** glued on 130µm (currently 210µm) Silicon Cooling Plate

![Diagram showing detector integration mechanics]

- Cooling Plate is clamped onto PCB (isostatic)
- PCB is glued into frame and flange
- Flange closes the vacuum vessel
- Detector replaced every 100 days of run
Mechanical Integration

- Detector glued on 130μm (currently 210μm) Silicon Cooling Plate
- Cooling Plate is clamped onto PCB (isostatic)
Mechanical Integration

- **Detector** glued on 130\(\mu\text{m}\) (currently 210\(\mu\text{m}\)) Silicon Cooling Plate

- Cooling Plate is clamped onto PCB (isostatic)

- PCB is glued into frame and flange
Mechanical Integration

- **Detector** glued on 130\(\mu m\) (currently 210\(\mu m\)) Silicon Cooling Plate

- **Cooling Plate** is clamped onto **PCB** (isostatic)

- **PCB** is glued into frame and flange

- **Flange** closes the **vacuum vessel**

- **Detector** replaced every 100 days of run
Electrical Integration

- TDCPix **wired bonded** to PCB serving power, clock, config and receiving data
Electrical Integration

- TDCPix \textit{wired bonded} to PCB serving power, clock, config and receiving data

- A \textbf{challenging} PCB:
 - 14 layers
 - 40 differential 3.2 Gb/s signals over 30cm
Electrical Integration

- TDCPix **wired bonded** to PCB serving power, clock, config and receiving data

- A **challenging** PCB:
 - 14 layers
 - 40 differential 3.2 Gb/s signals over 30cm
 - dense wire-bonding scheme (73µm pitch on chip)
Trigger and Data Acquisition

- Every hit in TDCPix is sent out
- Each TDCPix connects to one DAQ board through 4 optical links (one per TDCPix 3.2 Gb/s serializer)
- DAQ Board buffers data for 1ms..
- .. and retrieves 75ns slices upon each trigger request
Detector Cooling

Constraints

- Physics performances require to minimise material budget
- Detector in vacuum
- 35W power is dissipated per station
Detector Cooling

Constraints

- Physics performances require to minimise material budget
- Detector in vacuum
- 35W power is dissipated per station

Micro-channel cooling matches the constraints

- Etch channels in a 130 µm thin Si plate glued on TDCPix
- Circulate coolant (C₆F₁₄) in micro-channels (pressure 3.5 bars, flow 3 g/s, temp. ambient to -25C)
- First time implemented in HEP
Cooling Plates

- Fabricated by CEA Leti
Cooling Plates

- Fabricated by CEA Leti
- 200µm × 70µm channels
Cooling Plates

- Fabricated by CEA Leti
- $200\mu m \times 70\mu m$ channels
- Two cooling circuits
Cooling Plates

- Fabricated by CEA Leti
- $200\mu m \times 70\mu m$ channels
- Two cooling circuits
Cooling Plates

- Fabricated by CEA Leti
- $200\mu m \times 70\mu m$ channels
- Two cooling circuits
- Fluid brought in with capillaries
- Kovar connectors soldered onto cooling plate
Cooling Plates

- Fabricated by CEA Leti
- $200\mu m \times 70\mu m$ channels
- Two cooling circuits
- Fluid brought in with capillaries
- Kovar connectors soldered onto cooling plate
- Infra-red picture
Outlines

1. Detector Purpose and Specifications
2. The TDCPix ASIC Assembly
3. The Detector Integration
4. Performance
Time Resolution - TDCPix Demonstrator

Charge Injection

- **Laser** pulse shined at pixel centre
- Time resolution: **70 ps RMS** for charged injected equivalent to MIP

![Mean T0 RMS Jitter](image)

```
M. Noy
J. Instrum. 6 (2011) C01086
```
Time Resolution - TDCPix Demonstrator

Charge Injection
- **Laser** pulse shined at pixel centre
- Time resolution: 70 ps RMS for charged injected equivalent to MIP

Beam Test
- π^+ at 10GeV/c at CERN PS in 2012
- Time resolution: 200 ps RMS
Time Resolution - TDCPix Demonstrator

Charge Injection

- Laser pulse shined at pixel centre
- Time resolution: 70 ps RMS for charged injected equivalent to MIP

Beam Test

- π^+ at 10GeV/c at CERN PS in 2012
- Time resolution: 200 ps RMS

Difference Beam/Laser

- Weighting field and charge straggling
Performance Time Resolution

Time Resolution - TDCPix Demonstrator

Charge Injection

- **Laser** pulse shined at pixel centre
- **Time resolution:** 70 ps RMS for charged injected equivalent to MIP

Beam Test

- π^+ at 10GeV/c at CERN PS in 2012
- **Time resolution:** 200 ps RMS

Difference Beam/Laser

- Weighting field and charge straggling

mathieu.perrin-terrin@cern.ch (CERN) The NA62 GigaTracker 14th VCI 18/20
Time Resolution - Final TDCPix

- NA62 runs in 2014 and 2015
- Time Walk Correction
- $\sigma_t \approx 215 \text{ ps } @ \text{ 300V}$

$\chi^2 / \text{ndf} = 62.3 / 80$
$p0 = 4.47 \pm 0.02096$
$p1 = -0.5391 \pm 0.003927$
$p2 = 0.01083 \pm 0.0001706$

$\times 10^3$

Count / 10 ps

$\sigma_t = 232 \text{ ps}$

mathieu.perrin-terrin@cern.ch (CERN)
Time Resolution - Final TDCPix

- NA62 runs in 2014 and 2015
- Time Walk Correction
- $\sigma_t \approx 215 \text{ ps} @ 300V$
- In agreement with previous results

![Graph showing time resolution data with bias and time resolution values for test beam runs in 2014 and 2015.](image-url)
Conclusions

Summary

- GTK is essential to measure $\mathcal{B}(K^+ \rightarrow \pi^+ \nu \bar{\nu})$ at NA62
- Provides momentum, angles, and time for 1GPart/s
- 200 ps RMS time resolution has been achieved
- First implementation of micro-channel cooling in HEP

Prospects

- Run restarts on April 25th 2016
- Study effect of radiation damage on the timing performance
Conclusions

SPARES
GTK Kinematics in 2015

Without GTK
Full p range

With GTK
Full p range

Preliminary Data 2015

$K^+ \rightarrow \pi^+ \pi^0$

$K^+ \rightarrow \mu^+ \nu$

$K^+ \rightarrow \pi^+ \pi^+ \pi^-$

$|p_K - p|^2 [\text{GeV}^2/c^4]$