The Final Result on Direct CP Violation from the NA48 Experiment

Giacomo Graziani (LAL, Orsay)
on behalf of the NA48 collaboration

International Symposium on Multiparticle Dynamics
Alushta, Ukraine
September 11, 2002
Outline

- Short history of direct CP violation in the Neutral Kaon System
- The peculiar NA48 method
- The 2001 data and the FINAL result
- Not only ε'/ε ...
CP Violation in the Neutral Kaon System

CP conserved \(\implies K_L = K_2 \equiv \frac{1}{\sqrt{2}}(K^0 - \bar{K}^0) \) (CP=-1) \(\implies K_L \not\to \pi\pi \)

1964: \(K_L \) decay to \(\pi^+\pi^- \) observed with B.R. = \(2 \cdot 10^{-3} \)

Indirect CP Violation

![Diagram of CP Violation]

\[K_L = K_2 + \varepsilon K_1 \]

\[\pi^+ \pi^-, \pi^0 \pi^0 \]

Direct CP Violation

\[\langle I, 0 | T | K^0 \rangle = A_I e^{i\delta_I} \]
\[\langle I, 0 | T | \bar{K}^0 \rangle = A_I^* e^{i\delta_I} \]

\[\varepsilon' \equiv \frac{i}{\sqrt{2}} \text{Im} \left(\frac{A_2}{A_0} \right) e^{i(\delta_2 - \delta_0)} \quad (\text{Im}(A_0) \equiv 0) \]

Superweak Model by Wolfenstein: CP violation due to a new force in \(\Delta S = 2 \) transitions \(\implies \varepsilon' = 0 \)

1973: Kobayashi and Maskawa show that CP violation can be accommodated in the **Standard Model** by increasing the number of quark generations.
Direct CP Violation in the Standard Model

- within the Standard Model ε' can be computed as a function of the CKM matrix elements...

$$\frac{\varepsilon'}{\varepsilon} = \frac{Im(\lambda_t)}{0.074} \left(\frac{110 \text{ MeV}}{m_s(2\text{GeV})} \right)^2 \left[0.75 \ B_6 - 0.4 \ B_8 \left(\frac{m_t}{165 \text{ GeV}} \right)^{2.5} \right] \frac{\Lambda_{MS}}{340 \text{ MeV}}$$

("pedagogical" formula by A.Buras)

- but errors are dominated by long distance contributions to the penguin diagram terms B_6 and B_8

Current theoretical predictions:
ε'/ε in the range -10 to 30×10^{-4}

Breakthrough from Lattice QCD computations?

- A precision measurement of ε'/ε can test SM predictions against other possibilities, as the Superweak Model ($\varepsilon' = 0$) or SUSY contributions
Measurements of ε'/ε

So far all experiments used the **Double Ratio method**:

$$R = \frac{\Gamma(K_L^0 \rightarrow \pi^0\pi^0)}{\Gamma(K_L^0 \rightarrow \pi^+\pi^-)} \frac{\Gamma(K_S^0 \rightarrow \pi^+\pi^-)}{\Gamma(K_S^0 \rightarrow \pi^0\pi^0)} \approx 1 - 6 \times \text{Re}\left(\frac{\varepsilon'}{\varepsilon}\right)$$

Evolution of World Average:

<table>
<thead>
<tr>
<th>Year</th>
<th>Average (10^{-4})</th>
<th>χ^2/ndf</th>
<th>χ^2 prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1993</td>
<td>14.4 ± 4.4</td>
<td>3.2/1</td>
<td>7%</td>
</tr>
<tr>
<td>1999</td>
<td>19.2 ± 2.5</td>
<td>10.4/3</td>
<td>2%</td>
</tr>
<tr>
<td>2001</td>
<td>17.3 ± 1.7</td>
<td>5.6/3</td>
<td>13%</td>
</tr>
</tbody>
</table>
Minimize systematic errors on the double ratio

\[
R = \frac{\Gamma(K^0_L \to \pi^0\pi^0) \Gamma(K^0_S \to \pi^+\pi^-)}{\Gamma(K^0_L \to \pi^+\pi^-) \Gamma(K^0_S \to \pi^0\pi^0)} \approx 1 - 6 \text{Re}(\varepsilon'/\varepsilon)
\]

through

- simultaneous acquisition of the 4 decay modes
- in the same fiducial region
- from two high-intensity quasi-collinear beams
The Central Detector

\(\pi^0 \pi^0 \)

LKr electromagnetic calorimeter:
- quasi-homogeneous detector based on 9 m^3 LKr
- Cu Be electrodes
- 13212 2 x 2 x 127 cm^3
- \(\pm 48 \) mrad accordion geometry
- projective geometry
- geometry machined with 0.2 mm/m accuracy
- redundant time measurement by scintillating fiber neutral hodoscope

Magnetic Spectrometer:
- 4 chambers with 4 views each, 2 staggered planes per view
- 90 \(\mu \)m spacepoint resolution
- wire position known better than 100 \(\mu \)m/m
- magnet providing 265 MeV/c \(p_T \) kick

Hodoscope:
- 2 planes of scintillators for precise measurement of event time

G. Graziani – The Final Result of NA48
Event Reconstruction

$\pi^0 \pi^0$

Imposing K^0 mass to $K \rightarrow \pi^0 \pi^0 \rightarrow 4\gamma$

$$D = \sqrt{\sum E_i E_j \times (r_{ij})^2} / M_K$$

→ Longitudinal vertex resolution: ~ 55 cm
→ π^0 mass resolution:

$\sigma_+ \sim 0.42$ MeV
$\sigma_- \sim 0.83$ MeV

$\pi^+ \pi^-$

→ Momentum resolution:

$\sigma(P)/P = 0.45\% \oplus 0.009 \ P[\text{GeV/c}]\%$

→ Vertex resolution:

- longitudinal ~ 50 cm
- transverse ~ 2 mm

→ $\pi^+ \pi^-$ invariant mass resolution:

![Invariant mass distribution](image)

$\sigma = 2.5$ MeV

Backgrounds ($3\pi^0, K_{e3}, K_{\mu3}$ decays from K_L) reduced to $< 0.2\%$!!
Telling K_S from K_L

Vertex Identification for $\pi^+\pi^-$

Tagger Identification

$K \to \pi^+\pi^-$ vertex selected (2001 data)

- Tagging Window
- K_L
- Mistagged K_L ($\alpha_{LS}=8\%$)
- Untagged K_S ($\alpha_{SL}=0.01\%$)
KL Weighting and Acceptance Correction

70 < Kaon Energy < 170 GeV

![Graph showing MC Double Ratio vs Kaon Energy](image)

Residual acceptance difference after weighting is < 3 × 10⁻³
Analysis Strategy

→ identify K_S and K_L by tagging in time the K_S beam protons (correct event counts for mistagging using vertex identification for $\pi^+\pi^-$)

→ the main K_S / K_L differences are minimized offline:
 energy spectra: perform analysis in 20 energy bins from 70 to 170 GeV
 lifetime: weight K_L events according to the theoretical K_S to K_L ratio of proper time distributions: $w(t) \sim e^{-t\left(\frac{1}{\tau_S} - \frac{1}{\tau_L}\right)}$

→ compute the double ratio in each energy bin
→ apply small ($< 0.3 \%$ by first principles) corrections for remaining biases (backgrounds, mistagging, reconstruction and intensity effects...)

G. Graziani – The Final Result of NA48
Published results:

1997 data: \(Re(\varepsilon'/\varepsilon) = (18.5 \pm 4.5 \pm 5.8) \times 10^{-4} \)

1998/1999 data: \(Re(\varepsilon'/\varepsilon) = (15.0 \pm 1.7 \pm 2.1) \times 10^{-4} \)

All four chambers damaged after beam pipe implosion in Nov. 1999

2000 run only for neutral events (cross-checks and rare \(K_S \) decays)

Chambers rebuilt in time for the 2001 data-taking

FINAL RESULT (INCLUDING 2001) TODAY
The 1998+1999 Result

<table>
<thead>
<tr>
<th>Event Statistics (millions) 1998+1999</th>
</tr>
</thead>
<tbody>
<tr>
<td>$K_L \rightarrow \pi^0\pi^0$</td>
</tr>
<tr>
<td>$K_S \rightarrow \pi^0\pi^0$</td>
</tr>
<tr>
<td>$K_L \rightarrow \pi^+\pi^-$</td>
</tr>
<tr>
<td>$K_S \rightarrow \pi^+\pi^-$</td>
</tr>
</tbody>
</table>

R before correction = 0.98739 ± 0.00101 (stat.)

Corrections and systematic errors on R

<table>
<thead>
<tr>
<th>Correction</th>
<th>ΔR</th>
<th>Error</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\pi^0\pi^0$ reconstruction</td>
<td>$-$</td>
<td>± 0.00058</td>
<td></td>
</tr>
<tr>
<td>Acceptance</td>
<td>$+0.00267$</td>
<td>± 0.00057</td>
<td></td>
</tr>
<tr>
<td>$\pi^+\pi^-$ trigger inefficiency</td>
<td>-0.00036</td>
<td>± 0.00052</td>
<td>\leftarrow rate effects</td>
</tr>
<tr>
<td>Accidental activity</td>
<td>$-$</td>
<td>± 0.00044</td>
<td>\leftarrow rate effects</td>
</tr>
<tr>
<td>Accidental tagging</td>
<td>$+0.00083$</td>
<td>± 0.00034</td>
<td>\leftarrow rate effects</td>
</tr>
<tr>
<td>Tagging inefficiency</td>
<td>$-$</td>
<td>± 0.00030</td>
<td>\leftarrow rate effects</td>
</tr>
<tr>
<td>Background to $\pi^+\pi^-$</td>
<td>$+0.00169$</td>
<td>± 0.00030</td>
<td></td>
</tr>
<tr>
<td>$\pi^+\pi^-$ reconstruction</td>
<td>$+0.00020$</td>
<td>± 0.00028</td>
<td></td>
</tr>
<tr>
<td>Beam scattering</td>
<td>-0.00096</td>
<td>± 0.00020</td>
<td></td>
</tr>
<tr>
<td>Background to $\pi^0\pi^0$</td>
<td>-0.00059</td>
<td>± 0.00020</td>
<td></td>
</tr>
<tr>
<td>Long term K_S/KL variations</td>
<td>$-$</td>
<td>± 0.00006</td>
<td></td>
</tr>
<tr>
<td>Total Systematic</td>
<td>$+0.00359$</td>
<td>± 0.000126</td>
<td></td>
</tr>
</tbody>
</table>

\[\text{Re}(\epsilon'/\epsilon) = (1-R)/6 = (15.0 \pm 1.7 \text{ (stat.)} \pm 2.1 \text{ (syst.)}) \times 10^{-4} \]
The 2001 Run

Different Beam conditions:

- duty cycle: 2.4/14.4 s → 5.2/16.8 s
- proton energy: 450 GeV → 400 GeV
- instantaneous intensity: ~ 30% lower

New spectrometer's drift chambers

![Graph of Good K_L Events / 100 ms over time within burst(s)]

![Graph of M(π⁺π[−]) (GeV/c²) distribution with peak at σ = 2.5 MeV]
Comparing 2001 with 1998/1999

<table>
<thead>
<tr>
<th></th>
<th>1998+1999</th>
<th>2001</th>
</tr>
</thead>
<tbody>
<tr>
<td>#K_L \rightarrow \pi^0\pi^0</td>
<td>3.29×10^6</td>
<td>1.54×10^6</td>
</tr>
<tr>
<td>Statistical error on R</td>
<td>10.1×10^{-4}</td>
<td>14.7×10^{-4}</td>
</tr>
<tr>
<td>DCH overflow rate</td>
<td>21.5 %</td>
<td>11.7 %</td>
</tr>
<tr>
<td>Mistagging prob. α_{LS}</td>
<td>10.6 %</td>
<td>8.1 %</td>
</tr>
<tr>
<td>L2 charged trigger efficiency</td>
<td>98.3 %</td>
<td>99.2 %</td>
</tr>
</tbody>
</table>

- lower average intensity
- but wider intensity range...
- better monitors of instantaneous rate

⇒ lower systematic uncertainty related to rate effects
The Result

Corrections and uncertainties on R (Units = 10^{-4}) errors are pure stat or pure syst

<table>
<thead>
<tr>
<th></th>
<th>2001</th>
<th>1998/1999</th>
</tr>
</thead>
<tbody>
<tr>
<td>statistical error</td>
<td>± 14.7</td>
<td>± 10.1</td>
</tr>
<tr>
<td>$\pi^0\pi^0$ reconstruction</td>
<td>± 5.3</td>
<td>± 5.8</td>
</tr>
<tr>
<td>Acceptance</td>
<td>21.9 ± 3.5 ± 4.0</td>
<td>26.7 ± 4.1 ± 4.0</td>
</tr>
<tr>
<td>$\pi^+\pi^-$ trigger inefficiency</td>
<td>5.2 ± 3.6</td>
<td>-3.6 ± 5.2</td>
</tr>
<tr>
<td>Accidentals: intensity diff.</td>
<td>± 1.1</td>
<td>± 3.0</td>
</tr>
<tr>
<td>illumination diff.</td>
<td>± 3.0</td>
<td>± 3.0</td>
</tr>
<tr>
<td>K_S in-time activity</td>
<td>± 1.0</td>
<td>± 1.0</td>
</tr>
<tr>
<td>Accidental tagging</td>
<td>6.9 ± 2.8</td>
<td>8.3 ± 3.4</td>
</tr>
<tr>
<td>Tagging inefficiency</td>
<td>± 3.0</td>
<td>± 3.0</td>
</tr>
<tr>
<td>$\pi^+\pi^-$ background</td>
<td>14.2</td>
<td>16.9</td>
</tr>
<tr>
<td>$\pi^+\pi^-$ reconstruction</td>
<td>± 2.8</td>
<td>± 2.8</td>
</tr>
<tr>
<td>beam scattering</td>
<td>-8.8</td>
<td>-9.6</td>
</tr>
<tr>
<td>$\pi^0\pi^0$ background</td>
<td>-5.6</td>
<td>-5.9</td>
</tr>
<tr>
<td>AKS inefficiency</td>
<td>1.2</td>
<td>1.1</td>
</tr>
<tr>
<td>Total systematic</td>
<td>+35.0 ± 6.5 ± 9.0</td>
<td>+35.9 ± 8.1 ± 9.6</td>
</tr>
</tbody>
</table>

$R = 0.99181 ± 0.00147_{stat} ± 0.00110_{syst}$
2001 RESULT: \[\text{Re}(\varepsilon'/\varepsilon) = (13.7 \pm 3.1) \times 10^{-4} \]

different beam conditions and new drift chambers

very good agreement with previous years
The Final Result

combining the 2001 result with the 97+98+99 one
\[(15.3 \pm 2.6) \times 10^{-4} \]
we get the final result

\[\text{Re}(\varepsilon'/\varepsilon) = (14.7 \pm 2.2) \times 10^{-4} \]

\[\rightarrow \text{5 years of data-taking} \]
\[\rightarrow 5.3 \times 10^6 K_L \rightarrow \pi^0\pi^0 \text{ collected} \]
\[\rightarrow \text{proposal goal successfully reached} \]
Not only ε'/ε . . .

NA48 is producing many other physics results on K_L, K_S and hyperon rare decays to study indirect CPV and low energy hadron dynamics (tests of χPT)

Notably:

- $K_S \to \gamma\gamma$
 \[BR = (2.78 \pm 0.06 \text{ (stat)} \pm 0.02 \text{ (MC stat)} \pm 0.04 \text{ (syst)}) \times 10^{-6} \]
 \text{(preliminary)}

- $K_L \to \pi^0\gamma\gamma$
 \[BR = (1.36 \pm 0.03 \text{ (stat)} \pm 0.03 \text{ (syst)} \pm 0.03 \text{ (norm)}) \times 10^{-6} \]
 \[a_V = -0.46 \pm 0.03 \text{ (stat)} \pm 0.04 \text{ (syst)} \]

- $K_S \to \pi^0\gamma\gamma$
 \[BR(m_{\gamma\gamma}^2/m_K^2 > 0.2) < 4.4 \times 10^{-7} \text{ (90 \% conf. level)} \]
 \text{(preliminary)}

- $K_S \to \pi^0e^+e^-$
 \[BR < 1.4 \times 10^{-7} \text{ (90 \% conf. level)} \]

- $K_L \to \pi^+\pi^-e^+e^-$
 \[BR = (3.1 \pm 0.1 \text{ (stat)} \pm 0.2 \text{ (syst)}) \times 10^{-7} \]
 \text{CPV Asymmetry} = (13.9 \pm 2.7 \text{ (stat)} \pm 2.0 \text{ (syst)})\%
 \text{(preliminary)}

- $K_S \to \pi^+\pi^-e^+e^-$
 \[BR = (4.3 \pm 0.2 \text{ (stat)} \pm 0.3 \text{ (syst)}) \times 10^{-5} \text{ first observation!} \]
 \text{CPV Asymmetry} = (-0.2 \pm 3.4 \text{ (stat)} \pm 1.4 \text{ (syst)})\%
 \text{(preliminary)}
The ε' program is finished, but not NA48

NA48/1
PRESENTLY RUNNING!
High-Intensity K_S run: $2 \times 10^{10} ppp$ (ε' intensity $\times 600$)
→ minor modifications of the beam line
→ new DCH read–out (higher rate capability)

Physics goal: reach unprecedented sensitivity for
- $K_S \rightarrow \pi^0 e^+ e^-$ ($\sim 2 \times 10^{-10}$)
- other rare K_S and hyperon decays
- CPV in $K_S \rightarrow 3\pi$

NA48/2
STARTING IN 2003
Simultaneous K^+/K^- beam
→ new beam line for an unseparated K^+/K^- beam
→ new beam spectrometer (KABES)

Physics goal: search for direct CPV in $K^\pm \rightarrow 3\pi$ decays
(measure A_g with 10^{-4} accuracy),
look for QCD vacuum condensate in K_{e4} decays
after the succesfull 2001 run, NA48 presented the final result on $\text{Re}(\varepsilon'/\varepsilon)$:

$$\text{Re}(\varepsilon'/\varepsilon) = (14.7 \pm 2.2) \times 10^{-4}$$

NA48 establishes direct CP violation by more than 6 σ!!

Results of similar accuracy expected from KTEV (FNAL) final sample and possibly from KLOE (at DAPHNE ϕ factory)

THEORY is expected to improve its predictive power for $\text{Re}(\varepsilon'/\varepsilon)$ in the Standard Model, mainly through **Lattice QCD** calculations.

Example of recent results (systematic errors not finalized...):

- CP–PACS group (*hep-lat/0108013*): $\text{Re}(\varepsilon'/\varepsilon) = (-8 \div 0) \times 10^{-4}$
- RBC group (*hep-lat/0110075*): $\text{Re}(\varepsilon'/\varepsilon) = (-9 \div -1) \times 10^{-4}$

too early to claim for new physics...

Many new interesting results on Kaon Physics are coming out from the collected data...

...and many more quantitative tests of CPV in the Standard Model (complementary to B physics) and of low–energy hadron dynamics to come in the next futures