Study of the Ke4 ($\pi^0\pi^0e^{\pm}v$) decay with NA48/2 @ CERN

Brigitte Bloch-Devaux Università degli Studi di Torino

on behalf of the NA48/2 Collaboration

KAON13

2013 Kaon Physics International Conference University of Michigan , Ann Arbor, April 29-May 1 No need to repeat NA48/2 description of experimental setup & detector performances...

- ♦ The Ke4 decay mode $(\pi^0 \pi^0 e^{\pm} v)$
- Selection and backgrounds
 Branching Ratio
 Form factor Preliminary
- Summary

Ke4 (00) decays : a simpler formalism than Ke4(+-)

Ke4 (00) BR and form factor: experiments and theory

Previous experiments had very low statistics (PDG 2012)

37 events from 3 experiments: $BR = (2.2 \pm 0.4) 10^{-5}$ (18% rel. error)214 events from KEK E470 (not considered): $BR = (2.29 \pm 0.34) 10^{-5}$ (large syst.)

No form factor determination so far, just a relation between partial rate and a constant form factor value : $\Gamma = 0.8 |V_{us} \cdot F|^2 10^3 s^{-1}$

Using the kaon mean life time $(1.2380 \pm 0.00021) 10^{-8} \text{ s}$, it translates to |Vus|. F = 1.49 ± 0.13 or F = 6.61 ± 0.58 for |Vus| = 0.2252 ± 0.0009

Theoretical predictions :

Isospin symmetry (mu=md= 0, α QED = 0) predicts a relation between rates $\Gamma(K|4 + -) = \frac{1}{2} \Gamma(K|4 0 \pm) + 2 \Gamma(K|4 00)$ (valid for lepton = e,µ) $K^{\pm}(2.4\% \text{ now } 0.8\%) \quad K^{0}(2.1\%) \quad K^{\pm}(18\%)$ ChPT calculations O(p2,p4,p6) from Bijnens Colangelo Gasser (NPB 427 (1994) 427) using available 1977 Ke4(+-) form factors predict : BR(Ke400) = (2.01 \pm 0.11) 10^{-5} (~5\% \text{ precision})

Event selection

Final state reconstructed from 1 charged track and 4 photons forming two $\pi^0 s$ pointing to the same decay vertex

Reconstruct the $\pi^{\pm} \pi^{0} \pi^{0}$ invariant mass assuming the charged track to be a pion.

In the plane (M3 π - MPDG, pt), Ke4 candidates (missing neutrino) are well separated from K3 π fully reconstructed events.

Particle-ID and background contamination

Normalization: requires pion-ID

- pion momentum > 5 GeV/c
- no requirement of an associated cluster

94 M candidates

Signal: requires electron-ID

electron momentum > 5 GeV/c
LKr Calorimeter cluster associated to track
E(LKr)/p within [0.9,1.1] + shower properties 66K candidates

:Background in Signal region

• fake-electron ($\pi^0 \pi^0 \pi^{\pm}$) measured with a data driven procedure

• real electron ($\pi^0 \pi^0 \pi^{\pm} \& \pi^{\pm}$ decay to e[±] v, BR = 1.23 10⁻⁴) estimated from a dedicated modified simulation

 accidentals (photons or tracks) measured from data with relaxed timing cuts and using side bands

B/S+B 0.71 % 0.12 % 0.24 % 1.07 %

Form factor measurement : principle

•Differential rate in the (S π ,Se) plane is proportional to |Fs| ²

Subtract background in the 2d-plane

- Compare to the same distribution obtained from simulation including acceptance, resolution, trigger efficiency, radiative corrections (real photon emission at decay vertex) and kinematic factors but using a constant form factor
- switch to dimensionless variables: $q2 = S\pi/4m_{\pi^+}^2 1$, $Se/4m_{\pi^+}^2$
- Define a grid of 10 equal population bins in q2 above q2=0 ($2m_{\pi^+}$ threshold) and two equal population bins below (10 bins with 6000 events each, 2 bins with 3000 events each), 10 bins in Se (300 or 600 events in 2d-bins)

$$M_{e\nu}(\text{GeV}/c)$$

Form factor measurement : energy dependence

Form factor energy dependence

Are the various results statistically consistent ? YES , also with the charged Ke4 mode

Form factor systematics and results

Source	f_s'/f_s	f_s''/f_s	f'_e/f_s	
fit procedure	_	_	_	
reconstruction	_	_	_	
trigger corrections	_		_	any!
acceptance control	0.002	0.002	0.001	iminari
background control	0.012	0.013	0.022	prelli
electron-id	0.008	0.007	0.002	
total systematics	0.015	0.015	0.022	
statistical error	0.033	0.040	0.024	

			Chi2/r	df = 0.97	(54% prob)
f'_s/f_s	=	$0.136 \pm 0.033_{stat} \pm 0.015_{syst}$		f_s''/f_s	f_{e}^{\prime}/f_{s}
f_s''/f_s	= -	$-0.060 \pm 0.039_{stat} \pm 0.015_{syst}$	f'_s/f_s	-0.946	0.189
f'_e/f_s	=	$0.110 \pm 0.024_{stat} \pm 0.022_{syst}$	f_s''/f_s		-0.063

Form factor below q2 = 0

The 10% drop (cusp-like) for q2<0 can be interpreted as final state charge exchange scattering in the Ke4(+-) mode :

Follow papers by Cabibbo (PRL 93 (2004)) and Cabibbo-Isidori (JHEP 03 (2005)) to write the amplitudes :

$$M_0 = f_s (1 + a \ q^2 + b \ q^4 + c \ S_e / 4m_{\pi^+}^2), \qquad M_1 = -2/3 \ (a_0^0 - a_0^2) \ f_s \ \sigma_{\pi},$$

$$q^2 = S_{\pi}/4m_{\pi^+}^2 - 1$$
 and $\sigma_{\pi} = \sqrt{1 - 4m_{\pi^+}^2/S_{\pi}} = \sqrt{|q^2/(1+q^2)|}$

above threshold ($q^2 > 0$): $|M|^2 = |M0 + iM1|^2 = M0^2 + M1^2$

below threshold (q² <0): $|M|^2 = |MO + M1|^2 = MO^2 + M1^2 + 2MO M1$ M is reduced as M1 < 0

KAON13/Ann Arbor

Playing with amplitudes

Simple exercise : •M1 and M0 add up to $|M|^2$ •reproduce qualitatively the deficit below q2 =0

Prelimit Replaying the fit to the (q2,Se) plane, including the known M1 contribution for q2> 0, one gets different parameter values with same errors and correlations

$$\begin{aligned} f'_s/f_s &= 0.123 \pm 0.034_{stat} \\ f''_s/f_s &= -0.054 \pm 0.040_{stat} \\ f'_e/f_s &= 0.111 \pm 0.024_{stat} \end{aligned}$$

Extending the fitted function to q2<0, reproduces the observed distribution (not a fit to the q2<0 distribution !)

Branching ratio measurement and uncertainties

BR (Ke4) = (N4 -Nbkg)/ N3 x A3/A4 x ε (K3 π) / ε (Ke4) x BR (K3 π)

Branching ratio result

combination of 10 statistically independent samples (each with stable data taking conditions)

 Γ (Ke400)/ Γ (K3 π) = (1.468 ± 0.008_{exp}) 10⁻³ 0.6% relative uncertainty

BR (Ke400) = (2.585 ± 0.010 stat ± 0.010 syst ± 0.032 ext) × 10⁻⁵ = (2.585 ± 0.035) × 10⁻⁵ 1.3% relative PDG 2012 (2.2 ± 0.4) × 10⁻⁵ 18% relative

 ${\rm BR}({\rm K}_{\rm e4})\times 10^5$

from BR to absolute form factor

Integrating $d^3\Gamma = \frac{G_F^2 |V_{us}|^2}{2(4\pi)^6 m_V^5} \rho(S_\pi, S_e) J_3(S_\pi, S_e, \cos\theta_e) \times dS_\pi dS_e d\cos\theta_e.$

and using the kaon mean life time $(1.2380\pm0.0021)\times10^{-8}$ s

 $\begin{aligned} |V_{us}| \cdot f_s &= 1.372 \pm 0.003_{stat} \pm 0.004_{syst} \pm 0.008_{ext} \\ \text{corresponding to } f_s &= 6.092 \pm 0.012_{\text{stat}} \pm 0.017_{\text{syst}} \pm 0.045_{\text{ext}} \end{aligned}$ Preliminary

for $|V_{us}| = 0.2252 \pm 0.0009$

To be compared with fs in the Ke4(+-) mode :

 $f_s = 5.705 \pm 0.003_{\text{stat}} \pm 0.017_{\text{syst}} \pm 0.031_{\text{ext}}$

Phys .Lett. B715(2012) 105

both values not really consistent within their errors: is there a missing ingredient?

Summary

NA48/2 has collected a large sample of Ke4(00) events which leads to

• most precise BR value (1.3% relative precision) improving the world average value by more than one order of magnitude

• first form factor determination including significant dependence with q2 and Se + evidence for rescattering effect in the final state

• absolute form factor value significantly away from the Ke4(+-) corresponding form factor value

• results are PRELIMINARY but should be finalized by Summer 2013 and go for publication

• discussion with theory groups is most important for a correct and precise formulation of the processes under study.

• Prospects : both Kµ4 modes should be also accessible with $O(10^3)$ events, Kµ4 (+-) known so far from 9 events, Kµ4 (00) never observed ...

KAON13/Ann Arbor

Thank you !

Fs(0,0) = fs measurement systematic uncertainties Preliminary

 $f_s = 6.092 \pm 0.012_{\text{stat}} \pm 0.017_{\text{syst}} \pm 0.045_{\text{ext}}$

Source	relative contribution $(\%)$		
$BR(K_{e4})$ statistical error	0.19		
$BR(K_{e4})$ systematic error	0.19		
Form factor energy dependence (systematic error)	0.10		
Form factor cusp effect (systematic error)	0.13		
Integration method (systematic error)	0.02		
Radiative effects in integration (systematic error)	0.03		
Total experimental error	0.32		
$BR(K_{e4})$ external error	0.62		
Kaon lifetime (external error)	0.08		
$ V_{us} $ (external error)	0.40		
Total error (including external errors)	0.81		